

Dependability Modeling with the
Architecture Analysis & Design Language
(AADL)

Peter Feiler (Software Engineering Institute)
Ana Rugina (LAAS-CNRS)

July 2007

CMU/SEI-2007-TN-043

Performance-Critical Systems Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

 SOFTWARE ENGINEERING INSTITUTE | i

Table of Contents

Abstract vii

1 Introduction 1

2 Dependability Modeling with the Error Model Annex 2

3 The AADL Architecture Model 4

4 Reusable Error Models 6
4.1 Error Model Definition 6
4.2 Error Model Annex Libraries 8
4.3 Examples of Error Model Definitions 8

4.3.1 Fault and Repair Models for an Isolated Component 9
4.3.2 Modeling Transient and Permanent Faults 11
4.3.3 Modeling Error Propagation 12
4.3.4 General Error Model for Hardware Components 15
4.3.5 General Error Model for Software Components 18
4.3.6 Comparison of General Error Models for Hardware and Software Components 20

5 System Architectures and Error Models 21
5.1 Association of Error Model Instances 21
5.2 Error Propagations between Components of the System 23

5.2.1 Dependency Rules for Propagations 23
5.2.2 Inheritance Rules for Propagations 26

5.3 Error Propagation across Error Models 27
5.4 Filtering of Incoming Propagations 28

5.4.1 Role of a Guard_In Property 28
5.4.2 Guard_In Property Application 28
5.4.3 Error Propagation Mappings 30
5.4.4 Error Propagation Filtering and Masking 32
5.4.5 Connection-Specific Filtering 33

5.5 Filtering of Outgoing Propagations 33
5.5.1 Role of a Guard_Out property 33
5.5.2 Guard_Out Property Application 34
5.5.3 Error Propagation Pass-Through Mappings 36
5.5.4 Pass-Through Filtering and Masking 38

5.6 Error State Propagation 39
5.6.1 Use of Error States in Conditions 39
5.6.2 Use of Inferred Error States 40

5.7 Comparison between Guard_In and Guard_Out 41

6 System Instance Error Models 42
6.1 Abstraction with Basic Error Models 42

6.1.1 When to Use Basic Error Models 43
6.1.2 How to Use Basic Error Models 43

6.2 Derived Error Models 44

ii | CMU/SEI-2007-TN-043

6.2.1 When to Use Derived Error Models 45
6.2.2 How to Use Derived Error Models 45

7 Operational Modes and Error States 48
7.1 Modeling of Operational Modes 49

7.1.1 Modes, Mode Transitions, and Events 49
7.1.2 Application of Modes and Events 49

7.2 Generation of System Events 50
7.2.1 Role of a Guard_Event Property 50
7.2.2 Guard_Event Property Application 51
7.2.3 How to Use Guard_Event Properties 51

7.3 Mode Transition Logic 53
7.3.1 Role of a Guard_Transition Property 53
7.3.2 How to Specify Event-Based Mode Transition Conditions 54
7.3.3 How to Specify Error-Based Mode Transition Conditions 55

7.4 Mode Transitions and Error Models 56
7.5 AADL Model Examples for Systems with Modes 57

7.5.1 Cold Standby of Self-Observing Components 57
7.5.2 Hot Standby of Self-Observing Components 59
7.5.3 Self-Managing Components 62
7.5.4 A Monitoring Component 64
7.5.5 Mutually Informing Components 67
7.5.6 Mutually Observing Components 69

8 Modeling Maintenance and Repair 72

9 Analysis Report Information 74

10 Summary 75

References 76

 SOFTWARE ENGINEERING INSTITUTE | iii

List of Figures

Figure 1: Error Models in System Hierarchy 2

Figure 2: State Visible from Outside 15

Figure 3: General Hardware Component Error Model 16

Figure 4: General Software Component Error Model 19

Figure 5: Execution Platform and Applications Error Propagation 25

Figure 6: End-to-End Propagation 27

Figure 7: Guard_In Mapping 29

Figure 8: Guard_Out Mapping 34

Figure 9: AADL Architecture with Guard_Out Property 38

Figure 10: Observed Fault 41

Figure 11: Derived Error State Mapping 45

Figure 12: Dual Redundancy Pattern 50

Figure 13: Cold Standby Pattern 58

Figure 14: Cold Standby of a Self-Observing Component 58

Figure 15: Hot Standby Pattern 60

Figure 16: Hot Standby of a Self-Observing Component 60

Figure 17: A Self-Managing Component 63

Figure 18: Monitoring Component 65

Figure 19: Mutually Informing Components 67

Figure 20: Mutually Observing Components 69

Figure 21: Maintenance Dependency 72

iv | CMU/SEI-2007-TN-043

 SOFTWARE ENGINEERING INSTITUTE | v

List of Tables

Table 1: Content in this Document 1

Table 2: Error Model Definition 6

Table 3: Error Model Annex Library 8

Table 4: Fault Model Definition for Isolated Component 9

Table 5: Fault and Repair Model Definition for Isolated Component 10

Table 6: Fault Model with Transient and Permanent Faults 11

Table 7: Error Model Definition for Component with Error Propagation 13

Table 8: Error Model Definition with Error Observation 14

Table 9: Error Model Definition for a Hardware Component 17

Table 10: Error Model for Software Component 20

Table 11: Error Model Handling Behavior 20

Table 12: Error Model Instance for Component Implementation 22

Table 13: Error Model Instance for Subcomponent 22

Table 14: Shared Hardware Dependency Rules for Propagations 24

Table 15: Application Interaction Dependency Rules for Propagations 24

Table 16: Hardware Interaction Dependency Rules for Propagations 25

Table 17: Dependency Rules for Propagations to Address Special Cases 25

Table 18: Inheritance Rules for Error Propagation 26

Table 19: Guard_In Property Use 29

Table 20: Error Propagation Mappings 31

Table 21: Masking and Filtering of Error Propagations 32

Table 22: Guard_Out Property in Use 35

Table 23: Error Propagation Pass-Through Mappings 37

vi | CMU/SEI-2007-TN-043

Table 24: Guard_Out Example 39

Table 25: Symmetry and Asymmetry between Guard_In and Guard_Out 41

Table 26: Abstract Error Model Specified Using Model_Hierarchy 44

Table 27: Derived State Mapping Structure 44

Table 28: Derived State Mapping Property 47

Table 29: Guard_Event Property 51

Table 30: Event-Based Mode Transition Condition 54

Table 31: Error-Based Mode Transition Condition 56

Table 32: Activate and Deactivate State Transitions 57

Table 33: Cold Standby of a Self-Observing Component 59

Table 34: Hot Standby of a Self-Observing Component 61

Table 35: Self-Managing Component 64

Table 36: Monitoring Component 66

Table 37: Mutually Informing Components 68

Table 38: Mutually Observing Components 70

Table 39: Error Model for Shared Repairman 73

Table 40: Report Property 74

 SOFTWARE ENGINEERING INSTITUTE | vii

Abstract

The Society for Automotive Engineers (SAE) recently published an Error Model Annex docu-
ment (SAE AS-5506/1) to complement the SAE Architecture Analysis & Design Language
(AADL) standard document (SAE AS5506) with capabilities for dependability modeling. The
purpose of this report is to (a) explain the capabilities of the Error Model Annex and (b) provide
guidance on the use of the AADL and the error model in modeling dependability aspects of em-
bedded system architectures. The focus of the guidance is the creation of error model libraries and
the instantiation of these error models on AADL architecture models. In that context, the report
discusses modeling of error propagation, error filtering and masking, the interactions between
error models and systems with operational modes, and modeling of repair activities.

viii | CMU/SEI-2007-TN-043

 SOFTWARE ENGINEERING INSTITUTE | 1

1 Introduction

This report aims to show how the Error Model Annex [SAE-AS5506/1 2006] standard can be
used in conjunction with the description capabilities of the Architecture Analysis & Design Lan-
guage (AADL) standard [SAE-AS5506 2004] to add dependability-related information—such as
fault and repair assumptions, error propagations, fault-tolerance policies, and voting—to an
AADL architecture model. The resulting annotated model can then be used as an input to depend-
ability analyses for fault forecasting during different phases of the development cycle.

Each dependability analysis requires specific dependability-related information from the model.
This information may include

• fault assumptions

• repair assumptions

• fault-tolerance mechanisms

• stochastic parameters of the system (i.e., the occurrence of fault events and propagations)

• characteristics of phases in a phased-mission system

Depending on the analysis to be performed, the model will look different. For example, in the
case of qualitative dependability analyses, no stochastic and timing properties are needed in the
model. For a fault-tree analysis, repair assumptions do not need to be taken into account.

We assume that the reader is familiar with the concepts of fault-tolerance and dependability anal-
ysis. The reader is referred to the Dependability Handbook for detailed information on these top-
ics [Arlat 1998]. This report is structured as shown in Table 1:

Table 1: Content in this Document

Section Description of Content

2 Presents the scope of the AADL Error Model Annex

3 Identifies the constructs of the AADL core language relevant to error modeling and comments on the
level of architectural detail necessary for dependability-oriented modeling

4 Explains mechanisms for reusing error models

5 Shows the architecture-dependent parts of the dependability-related information (i.e., the parts that can-
not be reused across architectures)

6 Presents hierarchic error modeling options

7 Discusses issues related to dependability modeling for systems with operational modes

8 Explains how you can deal with maintenance and repair in AADL models

9 Presents the mechanisms that allow you to specify elements in the model of interest to specific depend-
ability analyses

2 | CMU/SEI-2007-TN-043

2 Dependability Modeling with the Error Model Annex

The Error Model Annex can be used to annotate the AADL model of an embedded system to sup-
port a number of the methods cited in SAE ARP4761, Guidelines and Methods for Conducting

the Safety Assessment Process on Civil Airborne Systems and Equipment [SAE-ARP4761 1996].
An architecture specification containing error models may be subjected to a variety of analysis
methods. For example, fault trees can be generated from specifications to assess safety, or Markov
analyses can be applied to assess reliability and availability.

The error models of low-level components typically capture the results of failure modes and ef-
fects analysis (e.g., as failure modes and effects analysis as defined in SAE ARP 4761). The error
models of the overall system and high-level subsystems typically capture the results of system
hazard analysis (e.g., as hazard analysis as defined in SAE ARP 4761). Figure 1 illustrates the use
of error models at different levels of the system hierarchy. Error models can also be associated
with connections between components to characterize any fault behavior of component interac-
tions, such as the transfer of data.

Figure 1: Error Models in System Hierarchy

The error behavior of a complete system emerges from the interactions between the individual
component and connection error models. The system error model is a composition of the error
models of its components where the composition is derived from the system hierarchy, the inter-
actions between components, and the shared computing platform resources. For example, a com-
ponent error model with probabilistic properties represents a stochastic automaton. The system
error model represents the composition of the concurrent stochastic automata of the components
in that system; it reflects error propagation between components based on the component depend-
encies in the AADL architecture model and the error management rules that are specified in error
model annotations. Risk mitigation methods employed in embedded computer system architec-
tures to increase safety, reliability, integrity, and availability are modeled by specifying how com-

System

Component

Subsystem

Capture failure modes and effects analysis model

Capture hazards

Capture risk mitigation architecture

 SOFTWARE ENGINEERING INSTITUTE | 3

ponents detect and mitigate errors in their subcomponents or in the components on which they
depend.

The Error Model Annex supports mixed-fidelity modeling by annotating system components with
different reusable error models. Mixed-fidelity modeling makes it easier to modify architecture
specifications and automatically regenerate safety and reliability models at different levels of fi-
delity; it also enables improved traceability between architecture specifications and the generated
models and analysis results.

You can define two kinds of reusable error models within an error model annex library: basic er-
ror models and derived error models. A basic error model declares a set of error states for a
component or connection, together with error state transitions and properties to specify how the
error state of a component changes due to error events and error propagations. For example,
the error state of a component might change due to an internal fault, represented by an error event,
or due to an error propagated into that component from some other component, represented by an
error propagation.

In a derived error model, the error state of a component may be defined in terms of the error
states of its subcomponents. For example, a component having internal redundancy might be in an
erroneous state only when two or more of its subcomponents are in erroneous states. In this case,
error state transitions are not explicitly defined.

You annotate application system components and execution platform components through error
model annex subclauses. These subclauses specify an error model from the library to be used for
a component and component-specific properties of the error model, such as

• probability of occurrence of errors and error propagation

• logical guards that determine the effects those errors and error propagations have on compo-

nent error states

• mappings of error states and error propagations in the error model into events on event ports

of components

• mode transition conditions in terms of events through event ports, error states, and error prop-

agations

You may use a basic error model as an abstraction for a given subsystem; a derived error model
should be specified in terms of subcomponent and connection error models of that subsystem.

It is possible to check for consistency, completeness, and traceability between the error models of
interacting components and between the error models of components and their subcomponents.
This monitoring capability helps ensure a globally consistent and complete error model for the
overall architecture. It also enables an integrated approach that ensures consistency and complete-
ness between hazard analysis (HA) and failure modes and effects analysis (FMEA) and with the
safety and reliability analyses that associate them together.

4 | CMU/SEI-2007-TN-043

3 The AADL Architecture Model

To perform dependability analyses, you can describe a system’s architecture in AADL and anno-
tate this architecture model with error models containing relevant dependability-related informa-
tion. AADL supports modeling of the embedded software system, the hardware platform, and the
external environment as a set of interconnected application components mapped onto a set of in-
terconnected execution platform components.

For dependability analyses, the architecture model does not need to be complete (i.e., the software
does not need to be modeled to the level of threads and the hardware does not need to be de-
scribed in terms of memory, processors, devices, and buses):

• The application software can be modeled using AADL system components; it can also be

modeled to the level of partitions or that of processes and threads.

• The hardware platform can be modeled using AADL system components, or it can be mod-

eled to the level of processors, memory, devices, and buses.

• The component may be defined at different levels of abstraction. For example, an AADL

model with a real-time operating system or a bus type may represent a network including pro-

tocols. These execution platform component specifications can later be refined into models

that provide the details of the implementation.

• Dynamic aspects of system architecture can be captured with the AADL mode concept. Dif-

ferent modes of a system or system component can represent different system configurations

and connection topologies, as well as different sets of property values to represent changes in

nonfunctional characteristics such as performance or fault occurrence.

It is only necessary to model the components that are of interest in the analysis (i.e., those for
which the behavior in the presence of faults is considered). As a result, architecture models can be
formed at early stages in the development process, when the architecture is not completely de-
tailed. Later, they can be refined into a more detailed architecture representation for higher fidelity
analysis.

The scope of the dependability analysis determines the aspects of the system to be modeled in
AADL. The model may focus on representing the computing platform and the external environ-
ment, the embedded application software system, and an embedded application deployed on a
particular execution platform. In the last case, the binding of the application system to the execu-
tion platform is expressed in AADL through a set of binding properties.

AADL supports the representation of end-to-end flows through the concept of a flow specifica-
tion. End-to-end flows can be analyzed in the context of partially or fully complete AADL mod-
els. This flexibility allows for flow-related analyses to increase in fidelity as the architecture mod-
el is refined. Although not explicitly referenced in the Error Model Annex standard, end-to-end
flow specifications can identify the relevant system components needed to document critical
flows that must be considered in a reliability, availability, or fault-tree analysis.

 SOFTWARE ENGINEERING INSTITUTE | 5

You can find detailed information about the architecture description capabilities of AADL in The
Architecture Analysis & Design Language (AADL): An Introduction [Feiler 2006] and the AADL
standard document [SAE-AS5506 2004].

6 | CMU/SEI-2007-TN-043

4 Reusable Error Models

In this section, we describe how to define error models that can be applied to a number of system
components and tailored with component-specific information (i.e., error models that are reus-
able). We also illustrate how to associate such an error model to a component and provide exam-
ples of reusable error models.

4.1 ERROR MODEL DEFINITION

An error model is a state machine that can be associated with an AADL component or connection
in order to describe its behavior in terms of logical error states in the presence of faults. Error
models can be associated with (1) hardware components (processor, memory, device, and bus),
(2) software components (process, subprogram, data, thread, and thread group), (3) composite
components (system), and (4) connections.

An error model definition is divided into an error model type and an error model implementation.
Elements declared in the error model type can be customized through component-specific proper-
ties, when an error model is associated with a component as an error model instance. Several error
model implementations can correspond to the same error model type. Table 2 shows both an error
model type declaration and an error model implementation declaration.

Table 2: Error Model Definition

error model Example1
features
ErrorFree: initial error state;
Failed: error state;
Fail, Repair: error event;
CorruptedData: out error propagation
 {Occurrence => fixed 0.8};
end Example1;

error model implementation Example1.basic
transitions
ErrorFree-[Fail]->Failed;
Failed-[out CorruptedData]->Failed;
Failed-[Repair]->ErrorFree;
properties
Occurrence => poisson 1.0e-3 applies to Fault;
Occurrence => poisson 1.0e-4 applies to Repair;
end Example1.basic;

The error model type Example1 declares error states (i.e., ErrorFree and Failed), er-
ror events (i.e., Fault and Repair), and error propagations that can affect other components
(i.e., CorruptedData). One error state (ErrorFree) is the initial state.

The error model implementation Example1.basic declares error transitions between
states that are triggered by events and propagations. The error model instance is initially in

the state ErrorFree. Due to a Fault error event, it becomes Failed. Then, after a Repair

 SOFTWARE ENGINEERING INSTITUTE | 7

error event it becomes ErrorFree again. While Failed, the component sends error propaga-
tions CorruptedData.

Both the error model type and the implementation can declare Occurrence properties for
error events and error propagations. Occurrence properties specify the arrival rate (the
language keyword is poisson) or occurrence probability (language keyword is fixed) of error
events and outgoing error propagations. For the poisson arrival rate, the Occurrence prop-

erty takes a single positive real value, which is the λ parameter in the exponential survival distri-
bution 1 – e–λt. For the fixed probability, the Occurrence property takes a single real value in
the range [0.0, 1.0]. The Occurrence property can also have a user-defined distribution (indi-
cated by the language keyword nonstandard and the distribution name) with one or more val-
ues. The Error Model Annex standard permits the Occurrence property to have literal expres-

sions (i.e., µ, p, or 1-p).

If both the error model type and the error model implementation declare Occurrence
properties for a same error event or error propagation, the property value declared in the er-

ror model implementation overrides the one declared in the error model type. The value declared
in the error model type can be seen as a default value while the value declared in the error model
implementation can be seen as an implementation-specific value (i.e., different implementations
corresponding to the same type can declare different values for the Occurrence property of a

same error event or error propagation). Either of these values can be replaced by a component-
specific Occurrence value for each of the components with which the error model is associated

(see Section 5.1).

Observations

• Elements declared in an error model definition can have slightly different meanings accord-
ing to the dependability analysis to be performed. For example, a state can represent a failure
mode identified in an FMEA analysis or a hazardous state identified in a hazard analysis.

• Although called error state, states can represent error-free states as well as error states.

• Although called an error event, this logical event may represent a repair event as well

as a fault event.

• Some analyses do not involve probabilistic dependability measures; therefore, they do not
require the definition of occurrence properties (i.e., Occurrence property declarations are

optional).

• Note that error events and error propagations are logical events that may represent transient
faults. They are not port events that are communicated through event ports. Error events can
be declared in error models that can be associated with any kind of AADL component and
connection, even with components that cannot communicate events through event ports. For
example, one can associate an error model declaring error events and propagations with a
memory component. Although memory components are not able to send events through
ports, error events and states of the associated error model may be observed by the system;
they may be mapped into port events (Guard_Event) and may specify a condition for
transition to a different operational mode (Guard_Transition).

8 | CMU/SEI-2007-TN-043

4.2 ERROR MODEL ANNEX LIBRARIES

Error model definitions like the one shown in Table 2 are meant to be reusable. They are defined
as error model annex libraries separately from AADL component types and component imple-
mentations.

An error model annex library is declared as shown in Table 3. Several error model definitions are
declared between the constructs annex Error_Model {** and **};.

Table 3: Error Model Annex Library

package My_ErrorModels
public
annex Error_Model {**
error model Example1
…
end Example1;

error model implementation Example1.basic
…
end Example1.basic;

error model Example2
…
end Example2;

error model implementation Example1.basic
…
end Example2.basic;
**};
end My_ErrorModels;

Error model annex library declarations can be placed in AADL packages or in the local (anony-
mous) namespace of an AADL specification. When declared in an AADL package, an error
model can be referenced by the package name and the error model name from within error model
annex subclauses of any component type or component implementation. When declared in the
local namespace, the error model can be referenced by its name and can only be referenced within
error model annex subclauses in component types and component implementations declared in the
same local namespace.

Observations

• Different error models can be defined with the same name as long as the error model defini-
tions are placed in different AADL packages.

• The AADL standard limits each AADL package to one annex library declaration for each
annex. Consequently, all error model definitions in a package must be placed in the error
model annex library declaration.

4.3 EXAMPLES OF ERROR MODEL DEFINITIONS

This section includes some examples of error model definitions that could be placed in a library
and then applied to and customized in AADL models. We first define a simple error model for an

 SOFTWARE ENGINEERING INSTITUTE | 9

isolated system component (i.e., a system component whose errors do not affect other components
and that is not affected by errors of other components). In that context, we illustrate how to model
faults and repairs as well as transient and permanent faults. We then define an error model for
system components that propagate errors and are affected by propagated errors.

4.3.1 Fault and Repair Models for an Isolated Component

Table 4 shows a simple two-state error model definition that models faults in components. We
refer to it as a fault model. It declares two error states, ErrorFree and Failed, and one error
event, Fail. This error event triggers a transition between the two states. This error model defini-

tion does not declare any propagation, so it cannot influence the behavior of any components that
interact with the component to which it is associated.

This fault model definition is simple for three reasons:

1. It takes failure into account.

2. The behavior of any component in the presence of faults can be described in terms of the
ErrorFree and Failed states.

3. It declares a literal Occurrence property value for events that represent faults, which can

be tailored for each component.

Table 4: Fault Model Definition for Isolated Component

error model TwoStateFault
features
ErrorFree: initial error state;
Failed: error state;
Fail: error event {Occurrence => poisson lambda};
end TwoStateFault;

error model implementation TwoStateFault.general
transitions
ErrorFree-[Fail]->Failed;
end TwoStateFault.general;

ErrorFree Fail

Fail: lambda

10 | CMU/SEI-2007-TN-043

This error model can be extended to include repair behavior as a fault and repair model. For this
model, we add an event to represent that a component can repair itself or be repaired. This repair
event is then used to specify a transition from the Failed to the ErrorFree state. A fault and

repair model is illustrated in Table 5.

Table 5: Fault and Repair Model Definition for Isolated Component

error model TwoStateFaultRepair
features
ErrorFree: initial error state;
Failed: error state;
Fail: error event {Occurrence => poisson lambda};
Repair: error event {Occurrence => poisson mu};
end TwoStateFaultRepair;

error model implementation TwoStateFaultRepair.general
transitions
ErrorFree-[Fail]->Failed;
Failed-[Repair]->ErrorFree;
end TwoStateFaultRepair.general;

Observations

• Fault models can be used to represent fault information in dependency analyses that focus on
faults, such as a fault tree analysis. The state machine represented by error states and error
state transitions typically is without cycles (i.e., error events do not cause the error model to
return to an error-free state). This allows the error model to be translated into fault trees.

• Fault and repair models can be used on system components that permit repair during the life
of the system. Note that the state machine represented by error states and error state transi-
tions is cyclical due to the fact that repair events may return the error model state to an error-
free state. Fault tree analysis can still be performed, because the cycles of this state machine
can be broken by distinguishing between fault events and repair events. To distinguish be-
tween event types, the error event should be tagged with a property (to indicate whether it is
a fault or repair event) that can be interpreted by analysis tools.

ErrorFree Fail

Fail: lambda

Repair: mu

 SOFTWARE ENGINEERING INSTITUTE | 11

4.3.2 Modeling Transient and Permanent Faults

Components, in particular hardware components, exhibit transient and permanent faults. Initially
a component is in an ErrorFree state. Faults are activated with a specified rate, lh. A fault is
permanent with a given probability (ph) and temporary with the complementary probability (1-
ph). Errors caused by temporary faults disappear after a short period of time (dh). These behav-

iors are illustrated in Table 6.

Table 6: Fault Model with Transient and Permanent Faults

error model TransientPermanent
features
ErrorFree: initial error state;
Activation_Fault, Transient_Error, Permanent_Error: error state;
Fault: error event {Occurrence => poisson lh};
Permanent_Fault: error event {Occurrence => fixed ph};
Transient_Fault: error event {Occurrence => fixed 1-ph};
Repair_Transient: error event {Occurrence => poisson dh};
end TransientPermanent;

error model implementation TransientPermanent.general
transitions
ErrorFree-[Fault] -> Activation_Fault;
Activation_Fault-[Transient_Fault] -> Transient_Error;
Activation_Fault-[Permanent_Fault] -> Permanent_Error;
Transient_Error -[Repair_Transient] -> ErrorFree;
end TransientPermanent.general;

Observations

• We introduced an Activation_Fault state that allows the specification of a probability

of fault occurrence separately from the probability that the fault is a permanent versus a tran-
sient fault. The same model can be specified without that intermediate state, when the mod-
eler specifies the occurrences of the permanent and transient faults as separate probabilities.

• We modeled the transient fault as persisting for a short period of time, reflected in the
Transient_Error state and the transitions between it and the ErrorFree state. If the

modeler cares to model only the occurrence of a transient error, not its duration, the
Transient_Error can be eliminated, and a transition can be defined from the
ErrorFree state to itself.

ErrorFree Activation_Fault

Fault: lh

Repair_Transient: dh

Transient_Error

Permanent_Error

Permanent_Fault: ph

Transient_Fault: 1-ph

12 | CMU/SEI-2007-TN-043

4.3.3 Modeling Error Propagation

In many systems, failing components affect other components, because the components interact or
one component is an execution platform resource that an application component is bound to for
execution. Impact dependency information exists in an AADL model (see Section 5.2) and is used
when the modeler specifies how errors are propagated and how propagated errors are handled for
a system component (see Section 5.3).

In this section, we demonstrate how an error model shows that a component can propagate errors
to other components and be affected by errors propagated from other components through error
propagations (see Table 7). The error propagation property enhances the error model definition
shown in Table 4 on page 9 by declaring error propagations and referring to them in error state
transitions. The property declares outgoing and incoming propagations through an in out prop-
agation declaration. The in out propagation declaration is a shorthand for declaring an in
propagation and an out propagation with the same name.

An error propagation out of a component is specified with an out error propagation declaration.
An out error propagation occurs spontaneously and randomly according to the specified occur-

rence probability, when it is named in an error state transition and the current error model state of
the component is the origin of the transition.

An in error propagation indicates that a component knows the propagations coming from other
components by the specified name. The mapping of out error propagations of one component to
an in error propagation of an impacted component is determined by name matching or explicitly
specified as propagation guards for specific system components (see Section 5). The in propaga-

tion can be named in an error state transition to indicate that any error propagated from another
component results in a transition to the destination state of that transition declaration.

In Table 7, we can assume that a component failure influences the behavior of components that
depend on it. We make this action visible through the error propagation FailVisible that oc-
curs with a given probability p. The Occurrence property only applies to the FailVisible
out propagation. In propagations are the consequences of out propagations from other compo-

nents; therefore, they do not need Occurrence properties.

The two supplementary transitions declared in the error model implementation specify

respectively that

1. If the component is in the state ErrorFree and receives a FailedVisible in propaga-

tion, it goes to the state Failed.

2. The component remains in the state Failed when propagating out the FailedVisible

propagation.

 SOFTWARE ENGINEERING INSTITUTE | 13

Table 7: Error Model Definition for Component with Error Propagation

error model dependent
features
ErrorFree: initial error state;
Failed: error state;
Fail: error event {Occurrence => poisson lambda};
Repair: error event {Occurrence => poisson mu};
FailedVisible: in out error propagation {Occurrence => fixed p};
end dependent;

error model implementation dependent.general
transitions
ErrorFree-[Fail]->Failed;
Failed-[Repair]->ErrorFree;
ErrorFree-[in FailedVisible]->Failed;
Failed-[out FailedVisible]->Failed;
end dependent.general;

Table 8 shows an error model that models components that can observe failure of other compo-
nents but their error state is not affected by error propagation. A component may fail and can be
restarted to regain its ErrorFree state. Out propagations are used to notify when the compo-

nent fails and when it is restarted.

ErrorFree Failed

Fail: lambda

Repair: mu

FailVisible

FailVisible: p

14 | CMU/SEI-2007-TN-043

Table 8: Error Model Definition with Error Observation

error model independent
features
ErrorFree: initial error state;
Failed: error state;
Fail: error event {Occurrence => poisson lambda};
FailedVisible: out error propagation {Occurrence => fixed p};
IAmRestarted: out error propagation (Occurrence => fixed l);
end independent;

error model implementation independent.general
transitions
ErrorFree-[Fail]->Failed;
Failed-[out IAmRestarted]->ErrorFree;
Failed-[out FailedVisible]->Failed;
end independent.general;

Observations

• In the models shown in Table 7 and Table 8, the Fail error event shows that a fault occurs
in a component and is recognized as error. By defining a separate outgoing error
propagation, we can represent that the error may not always be observed by another

component or may be observed with a delay. We indicate those situations through an appro-
priate Occurrence property value of the error propagation.

• An error propagation reports an error state to other components. If their error states
are affected, the other components will have a corresponding in propagation. Alternatively,
those components may observe the out propagation through guards and take action based

on the condition of the guard. (See Sections 5.4 and 5.5 for information about guards.)

• If the component fault is always and immediately visible to other components (i.e., the prob-
ability of occurrence of the propagation is 1), we could choose to declare Fail as an
error propagation instead of an error event. However, the resulting error model

would be less reusable because it includes an assumption that the failure is always visible.

• In general, the error state of a component is made visible to other components by declaring
an error state transition that triggers an error propagation by naming an out propaga-

tion and has the same source and destination states (i.e., the propagation is sent out of the
component but the component itself does not move to a different state). Figure 2 shows this
mechanism. When the component is in StateA, it sends out an I_Am_In_State_A
propagation and returns to StateA. It is noteworthy that the state is only visible if the out
propagation occurs. If the out propagation occurs with a probability different from 1, the

state may not be always visible.

ErrorFree Failed

Fail: lambda

FailVisible: p

IAmRestarted: l

 SOFTWARE ENGINEERING INSTITUTE | 15

Figure 2: State Visible from Outside

The error model definition in Table 7 on page 13 can be considered to be more practical than the
one in Table 4 on page 9, because it assumes that the AADL component to which it is associated
interacts with other AADL components. The error model definition in Table 7 is general enough
to be applied to any AADL component.

We can represent a more realistic behavior in the presence of faults by distinguishing different
kinds of faults and consequences, as well as error detection mechanisms. The specification of an
error model definition depends directly on the fault and repair assumptions considered in a given
system and operational scenario. In the two following sections, we present error model definitions
intended to describe the behavior of hardware and software components, respectively.

4.3.4 General Error Model for Hardware Components

In Figure 3, we define a general error model for hardware components. The behavior of the hard-
ware component in the presence of faults is as follows:

1. Initially, the component is in HW_ErrorFree state.

2. Hardware faults (error event HW_Fault) are activated with a specified rate (lh) resulting in
a transition to the HW_Activation_Fault state.

3. The fault is either permanent (error event HW_Perm_Fault), with a given probability (ph)
triggering a transition to the HW_Permanent_Error state, or transient (error event
HW_Trans_Fault), with the complementary probability (1-ph) triggering a transition to
the HW_Transient_Error state.

4. The error caused by a permanent fault may be detected after some time (th), represented in
Figure 3 as a transition triggered by error event HW_Detection_Action to the
HW_Detection_Action_End state.

5. An error caused by a permanent fault is either detected (HW_Perm_Fault_Detect) with
a given probability (dh) or not detected (HW_Perm_Fault_Non_Detect) with a prob-
ability (1-dh).

− If the error is detected, the hardware component is repaired as represented by the
HW_In_Repair state.

− If the error is not detected (represented by the HW_Error_Non_Detect state), the
failure is perceived after a certain amount of time (fph). This behavior is shown as error
event HW_Failure_Perceived and triggers a transition the HW_In_Repair state,

after which the hardware component is repaired.

StateA

Out I_Am_In_StateA

16 | CMU/SEI-2007-TN-043

6. The component repair from a permanent fault takes some time (muh), with a transition trig-
gered by error event HW_Repair_Perm to the HW_ErrorFree state.

7. An error caused by a transient fault disappears after a short period of time (tfh). This be-
havior is shown as a transition triggered by error event HW_Repair_Trans to the
HW_ErrorFree state.

Figure 3: General Hardware Component Error Model

Some of the hardware states may influence other components of the architecture. Therefore, they
must be made visible to the outside through outgoing error propagations (shown in Figure 3 as
dashed lines with arrows). We assume that this influence exists for

• the transient error state

The transient error state is observed by other components after a certain amount of time (qh)
as represented by the outgoing error propagation HW_Transient.

• the state corresponding to a nondetected error

The nondetected error state is observed by other components after a certain amount of time
(rh) as represented by the outgoing error propagation HW_Perm_Non_Detect.

• the state where the hardware component needs repair

The state representing a hardware component needing repair is observed by other compo-
nents after a certain amount of time (sh) as represented by the outgoing error propagation
HW_Failed.

HW_Perm_Non_Detect: rh

HW_Transient: qh

HW_ErrorFree HW_Activation_Fault

HW_Fault: lh

HW_Repair_Trans: tfh
HW_Transient_Error

HW_Permanent_Error

HW_Perm_Fault: ph

HW_Trans_Fault: 1-ph

HW_In_Repair

HW_Detection_Action_End

HW_Error_Non_Detect

HW_Detection_Action: th
HW_Perm_Fault_Detect: dh

HW_Perm_Fault_Non_Detect: 1-dh

HW_Failure_Perceived: fph

HW_Repair_Perm: muh

HW_Failed: sh

 SOFTWARE ENGINEERING INSTITUTE | 17

Table 9 shows the error model definition corresponding to the specification depicted in Figure 3.
Notice that we used the HW prefix for all error states, events, and propagations in order to ensure

the readability of the model when several error models are associated with different system com-
ponents. Also, propagation names are important, because in and out propagations declared in

error model instances associated with interacting components are matched through their names or
are named in guard specifications.

Table 9: Error Model Definition for a Hardware Component

error model forHardware
features
HW_ErrorFree: initial error state;
HW_Activation_Fault, HW_Transient_Error, HW_Permanent_Error,
HW_Detection_Action_End, HW_Error_Non_Detect, HW_In_Repair: error
state;
HW_Fault: error event {Occurrence => poisson lh};
HW_Perm_Fault: error event {Occurrence => fixed ph};
HW_Trans_Fault: error event {Occurrence => fixed 1-ph};
HW_Detection_Action: error event {Occurrence => poisson th};
HW_Failure_Perceived: error event {Occurrence => poisson fph};
HW_Perm_Fault_Detect: error event {Occurrence => fixed dh};
HW_Perm_Fault_Non_Detect: error event {Occurrence => fixed 1-dh};
HW_Repair_Trans: error event {Occurrence => poisson tfh};
HW_Repair_Perm: error event {Occurrence => poisson muh};
HW_Transient: out error propagation {Occurrence => fixed qh};
HW_Perm_Non_Detect: out error propagation {Occurrence=> fixed rh};
HW_Failed: out error propagation {Occurrence => fixed sh};end
forHardware;

error model implementation forHardware.general
transitions
HW_ErrorFree-[HW_Fault]-> HW_Activation_Fault;
HW_Activation_Fault-[HW_Trans_Fault]-> HW_Transient_Error;
HW_Activation_Fault-[HW_Perm_Fault]-> HW_Permanent_Error;
HW_Transient_Error -[HW_Repair_Trans]-> HW_Err_Free;
HW_Permanent_Error-[HW_Detection_Action]-> HW_Detection_Action_End;
HW_Detection_Action_End -[HW_Perm_Fault_Detect]-> HW_In_Repair;
HW_Detection_Action_End-[HW_Perm_Fault_Non_Detect]->
HW_Error_Non_Detect;
HW_Err_Non_Detect-[HW_Failure_Perceived]-> HW_In_Repair;
HW_In_Repair-[HW_Repair_Perm]-> HW_ErrorFree;
HW_Transient_Error -[out HW_Transient]-> HW_Transient_Error;
HW_Error_Non_Detect-[out HW_Perm_Non_Detect]-> HW_Error_Non_Detect;
HW_In_Repair-[out HW_Failed]-> HW_In_Repair;
end forHardware.general;

The error model definition shown in Table 9 can be associated to a hardware component and
then customized by using particular values for Occurrence parameters. This definition models

the fault and repair assumptions presented by Figure 3. If you want to consider additional assump-
tions, you can modify the model. For example, you can assume that errors might become visible
outside the component when the component is in the state HW_Permanent_Err_State, even

though the detection action has not taken place yet.

18 | CMU/SEI-2007-TN-043

4.3.5 General Error Model for Software Components

We can consider the following behavior in the presence of faults for a software component. The
error model is shown in Figure 4.

1. Initially, the component is in SW_ErrorFree state.

2. Faults (shown as error event SW_Fault) are activated with a specified rate, ls, leading to
an SW_Activation_Fault state.

3. The error detection mechanisms need some time to detect an error (represented by the error
event SW_Detect_Action with distribution ts), culminating in an
SW_Detection_Action_End state.

4. An error can be detected (shown as error event SW_Detected) with a given probability ds
or not detected (shown as error event SW_Non_Detected) with the complementary prob-
ability 1-ds.

5. A detected error is processed during a certain amount of time (error event SW_Handling
with distribution pis), triggering a transition to the SW_Handling_End state.

− If the detected error is caused by a temporary fault (error event SW_Error_Temp with
probability 1-ps), its effects would be eliminated by the error detection mechanisms.
Consequently, the component moves to the SW_ErrorFree state. (Note: It is assumed

that all temporary faults can be eliminated.)

− If the error is caused by a permanent fault (error event SW_Error_Perm with probabil-
ity ps), the software would need to be restarted (SW_In_Restart state) to eliminate

the effects of the error.

6. The effects of a nondetected error may disappear after a certain amount of time (error event
SW_Non_Detected_Disappear with distribution dis) or may be perceived after a cer-
tain amount of time (error event SW_Non_Detected_Perceived with distribution
pcs).

7. After recovery from a detected error due to a permanent fault or from a nondetected and per-
ceived error, restart takes some time (error event SW_Restart with distribution vs).

8. Other components may observe the malfunctioning of the software component after a certain
amount of time, once the SW_In_Restart state is entered. This behavior is shown as an
outgoing error propagation SW_Failed.

 SOFTWARE ENGINEERING INSTITUTE | 19

Figure 4: General Software Component Error Model

Table 10 shows the error model definition corresponding to the specification illustrated by Figure
4. As we did for the hardware error model definition, we tagged all states, events, and propaga-
tions with an SW prefix.

SW_ErrorFree

SW_Activation_Fault

SW_ Error_Detected

SW_In_Restart

SW_Detection_Action_End

SW_Error_Non_Detected

SW_Detect_Action: ts

SW_Non_Detected_Perceived: pcs

SW_Non_Detected: 1-ds

SW_Error_Temp: 1-ps

SW_Restart: vs

SW_Failed: ps

SW_Non_Detected_Disappear: dis

SW_Detected: ds

SW_ Handling_End

SW_Error_Perm: ps

SW_Handling: pis

SW_Fault: ls

20 | CMU/SEI-2007-TN-043

Table 10: Error Model for Software Component

error model forSoftware
features
SW_ErrorFree: initial error state;
SW_Activation_Fault, SW_Detection_Action_End, SW_Error_Non_Detected,
SW_Error_Detected, SW_Handling_End, SW_In_Restart: error state;
SW_Fault: error event {Occurrence => poisson ls};
SW_Detect_Action: error event {Occurrence => poisson ts};
SW_Detected: error event {Occurrence => fixed ds};
SW_Non_Detected: error event {Occurrence => fixed 1-ds};
SW_Non_Detected_Disappear: error event {Occurrence => poisson dis};
SW_Non_Detected_Perceived: error event {Occurrence => poisson pcs};
SW_Handling: error event {Occurrence => poisson pis};
SW_Error_Temp: error event {Occurrence => fixed 1-ps};
SW_Error_Perm: error event {Occurrence => fixed ps};
SW_Restart: error event {Occurrence => poisson vs};
SW_Failed: out error propagation {Occurrence => fixed ps};
end forSoftware;

error model implementation forSoftware.general
transitions
SW_ErrorFree-[SW_Fault]-> SW_Activation_Fault;
SW_Activation_Fault-[SW_Detect_Action]-> SW_Detection_Action_End;
SW_Detection_Action_End -[SW_Detected]-> SW_Error_Detected;
SW_Detection_Action_End -[SW_Non_Detected]-> SW_Error_Non_Detected;
SW_Error_Non_Detected-[SW_Non_Detected_Disappear]->SW_ErrorFree;
SW_Error_Non_Detected-[SW_Non_Detected_Perceived]-
>SW_In_Restart;SW_Error_Detected-[SW_Handling]-> SW_Handling_End;
SW_Handling_End -[SW_Error_Temp]->SW_ErrorFree;
SW_Handling_End -[SW_Error_Perm]-> SW_In_Restart;
SW_In_Restart-[SW_Restart]-> SW_ErrorFree;
SW_In_Restart-[out SW_Failed]-> SW_In_Restart;
end forSoftware.general;

4.3.6 Comparison of General Error Models for Hardware and Software Components

In the error model definitions shown in Table 9 and Table 10, we did not declare any in
propagations because the matching between in and out propagations is done by matching
names. Thus, we have to consider the architecture environment in order to choose names for in

propagations. Section 5.1 shows how propagations are matched based on the AADL architecture
model.

In the presence of faults, the error models for hardware and software components behave differ-
ently, as Table 11 shows.

Table 11: Error Model Handling Behavior

Aspect Hardware Component Error Model Software Component Error Model

The point at which faults are
distinguished

Temporary and permanent faults are
distinguished immediately following the
fault activation during error handling.

Temporary and permanent faults are
distinguished just prior to repair.

The result of permanent faults
and perceived failures

Repair Restart

 SOFTWARE ENGINEERING INSTITUTE | 21

5 System Architectures and Error Models

Using AADL, you can model systems as

• a hierarchical collection of interacting application system components

• a set of computing platform components

• a set of device components that represent the external environment

The application components are bound to the computing platform. Device components are logi-
cally connected to application components and physically connected to computing platform com-
ponents.

Error models can be associated with application components, computing platform components,
and device components, as well as with the connections between them. An error model associated
with a component can be customized by setting component-specific values for the arrival rate or
probability of occurrence for error events and error propagations declared in the error model type.

Interactions between the error models of different components are determined by interactions be-
tween components in the architecture model (i.e., connections and bindings). Out propagations
are sent out of a component through all features connecting it to other components. Thus, out
propagations have an effect on any receiving component that declares an in propagation with the

same name.

You might need to model the handling of error propagations from multiple sources. In that case,
you can use propagation filtering through voting mechanisms to control error propagations, which
can be modeled by specifying filtering and masking conditions for propagations in an error model
to a component.

In this section, we describe

1. how error models can be associated with components (Section 5.1)

2. the component dependencies through which errors can be propagated (Section 5.2)

3. error propagation across components in the context of a simple system model (Section 5.3)

4. the mechanisms to model masking and filtering of error propagations (Sections 5.4 and 5.5)

5.1 ASSOCIATION OF ERROR MODEL INSTANCES

You can choose an error model definition and associate an instance of it with an AADL compo-
nent. Error model instances are declared for system components or connections through the
Model property in an error model annex subclause, as shown in Table 12. The Model property

names the error model implementation to be used. If the error model definition is in a different
package than the component, the package identifier precedes the name of the error model. The

22 | CMU/SEI-2007-TN-043

error model is associated with any component that is an instance of the component implementa-
tion containing the Model property.

The Model property also allows you to define a new error model without placing it in an error
model annex library. However, this option is not recommended, because the error model would
not be reusable (i.e., it cannot be instantiated anywhere else).

You might define component-specific Occurrence properties for events and outgoing propaga-
tions declared in the error model type definition through the applies to error clause. This
clause allows you to customize error models (i.e., to specify component-specific Occurrence

properties for the same error model associated with several different components). In Table 12,
we specify that computer.personal propagates corrupted data with a higher probability than

the default specified as part of the error model type definition declared in the library. The
applies to error clause associates a component implementation-specific Occurrence prop-

erty value with the error event CorruptedData.

Table 12: Error Model Instance for Component Implementation

system computer
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => My_ErrorModels::Example1.basic;
 Occurrence => fixed 0.9 applies to error CorruptedData;
**};
end computer.personal;

Error model property values can also be specified for specific instantiations of components (sub-
component declarations) and connections (see Table 13). The applies to clause is used with
a Model property to specify an error model instance for the CPU subcomponent. The applies
to clause may specify a path to a subcomponent or connection (i.e., a dot-separated sequence of

subcomponent names ending with a subcomponent or connection name to identify a component or
connection recursively contained in the component implementation).

Table 13: Error Model Instance for Subcomponent

system computer
end computer;

system implementation computer.personal
subcomponents
 CPU: processor Intel.DualCore;
 RAM: memory SDRAM;
 FSB: bus FrontSideBus;
annex Error_Model {**
 Model => My_ErrorModels::Example1.basic applies to CPU;
 Occurrence => fixed 0.9 applies to error CPU.CorruptedData;
**};
end computer.personal;

Similarly, the applies to error clause may specify a path to an error model feature of a sub-

component or connection (i.e., a dot-separated sequence of subcomponent names ending with a

 SOFTWARE ENGINEERING INSTITUTE | 23

subcomponent or connection name and followed by the error model feature name). Table 13
shows the Occurrence property being associated with the CorruptedData error propaga-
tion of the CPU subcomponent.

Observations

• A component-specific Occurrence property value overrides values declared in the error

model definition (type and implementation).

• Similarly, the applies to error clause can be used to declare all component-specific
Occurrence property values in the error model annex subclause of the system
implementation. Thus, component-specific and connection-specific error model in-

formation can be placed with either each component declaration or the root component of
the system.

5.2 ERROR PROPAGATIONS BETWEEN COMPONENTS OF THE SYSTEM

Propagation of errors between components is determined by their interdependencies. Those de-
pendencies are defined as dependency rules in the AADL architecture model and fall into four
categories (see Section 5.2.1). A second set of rules, defined as inheritance rules, determine
propagations when a component or connection does not have an error model (see Section 5.2.2).

5.2.1 Dependency Rules for Propagations

The first category of dependencies is Shared Hardware Dependencies; the rules in this category
are due to the fact that application software components execute on hardware (see Table 14). The
binding of the application components and connections to the execution platform components is
specified through Actual_Processor_Binding, Actual_Memory_Binding, and
Actual_Connection_Binding properties that indicate the processor, memory, bus, and

device that application components and connections are bound to.

Similarly, the binding of a server subprogram call is specified through an
Actual_Subprogam_Call_Binding property and is treated as a connection in the depend-

ency rules shown in (i.e., the remote call can be affected by the hardware over which the call is
routed).

24 | CMU/SEI-2007-TN-043

Table 14: Shared Hardware Dependency Rules for Propagations

Rule No. Propagations may occur from Propagations may occur to

D-1 Processor component Every thread bound to that processor

D-2 Processor component Every connection routed through that processor

D-3 Memory component Every software component bound to that memory

D-4 Memory component Every connection routed through that memory

D-5 Bus component Every connection routed through that bus

D-6 Device component Every connection routed through that device

The second category of dependencies is Application Interaction Dependencies. The rules in this
category (see Table 15) are due to the fact that application components interact with each other
through port-based communication (data ports, event ports, event data ports, and their respective
connections), through access to shared data (provides and requires data access), and through calls
on services provided by another component (server subprogram call bindings expressed through a
Actual_Subprogam_Call property).

Table 15: Application Interaction Dependency Rules for Propagations

Rule No. Propagations may occur from Propagations may occur to

D-7 Application component Each of the data components it has access to through
provides and requires data access declarations

D-8 Shared component All components that access it to through provides and
requires data access declarations1

D-9 Application component Every connection from any of its out ports

D-10 Connection Every component having an in port to which it connects2

D-11 Application component Any component via its outgoing connections

D-12 Client subprogram Every server subprogram to which a call is bound

D-13 Server subprogram Every client whose calls are bound to that server

The third category of dependencies is Hardware Interaction Dependencies; the rules in this cat-
egory are due to the fact that execution platform components are connected to each other through
shared access to buses (see Table 16). This is expressed in an AADL model by requires and pro-
vides bus access declarations and connections.

1 As a consequence of rules D-7 and D-8, an application component can affect any component with which it shares
access to a data component. If read and write access properties are specified for data access, the flow of infor-
mation can be taken into consideration in determining the impact.

2 As a result of rules D-9 and D-10, an application component can affect any connected component through its
outgoing connections.

 SOFTWARE ENGINEERING INSTITUTE | 25

Table 16: Hardware Interaction Dependency Rules for Propagations

Rule No. Propagations may occur from Propagations may occur to

D-14 Component Each bus that is accessed by a component through a bus
access connection

D-15 Bus Each component that accesses the bus through a bus ac-
cess connection

As shown in Table 17, the fourth category of dependency rules addresses special cases in system
architecture.

Table 17: Dependency Rules for Propagations to Address Special Cases

Rule No. Propagations may occur from Propagations may occur to

D-16 Subcomponent Every other subcomponent of the same process

D-17 Process Every other process that is bound to any common proces-
sor or memory—except for processes that are partitioned
from each other on all common resources

D-18 Connection Every other connection that is routed through any common
bus, processor, or memory—except for connections that are
partitioned from each other on all common resources

D-19 Event connection Every mode transition that is labeled with an in event port

that is a destination of that connection

Figure 5 illustrates propagation between error model instances based on application component
interactions and execution platform bindings. The upper portion of the figure shows two compo-
nents (A and B) connected by a port connection. Both the components and the connection have an
error model instances. Error propagation occurs in the direction of the port connection flow. The
lower portion of the figure illustrates that processors and the buses have error model instances as
well. Error propagation can occur between these hardware components due to the bus connec-
tivity. Finally, as the upward pointing arrows in Figure 5 show, error propagation can occur be-
tween the hardware and the application components and connections, due to their binding to the
execution platform.

Figure 5: Execution Platform and Applications Error Propagation

26 | CMU/SEI-2007-TN-043

5.2.2 Inheritance Rules for Propagations

A set of rules defines end-to-end error propagations (from one component error model to another
one). These rules are designed to recognize that some AADL components will not have error
model instances in a given architecture. Let us assume that a processor has an error model that
declares out propagations but the threads bound to it do not have error model instances. In this
case, no error model instance would be able to process those propagations. The set of inheritance
rules for error propagation is shown in Table 18.

Table 18: Inheritance Rules for Error Propagation

Rule No. Inheritance Rule Text

I-1 If the dependency rules define error propagations out of a component that does not have an associ-
ated error model but does have subcomponents with error models, then error propagations occur
out of each subcomponent error model.

Thus, where a component does not have an error model but its subcomponents do, error propaga-
tion occurs out of the subcomponents’ error models and follows the dependency rules of the compo-
nent.

I-2 If the dependency rules define error propagations out of a component that does not have an associ-
ated error model but does have a hierarchically containing component with an associated error
model, then error propagations occur out of the error model associated with this containing compo-
nent.

Thus, where a component does not have an error model but its parent does, error propagation oc-
curs out of the parent error model.

I-3 If the dependency rules define error propagations in to a component that does not have an associ-
ated error model but does have subcomponents with error models, then error propagations occur
into each subcomponent error model.

Thus, where a component does not have an error model but its subcomponents do, error propaga-
tion is passed on to the error models of the subcomponents.

I-4 If the dependency rules define error propagations in to a component that does not have an associ-
ated error model but does have a hierarchically containing component with an associated error
model, then error propagations occur into the error model associated with this containing compo-
nent.

Thus, where a component does not have an error model but its parent does, error propagation is
handled by the parent error model.

I-5 If the dependency rules define error propagations in to a semantic connection, then propagations
occur to all ultimate destinations of that connection.

Thus, where a connection does not have an error model, error propagation is passed from the com-
ponent that is the origin of the connection to the component that is the destination.

I-6 If the dependency rules define error propagations in to a shared data component, then propagations
occur to all other components that also share access to that data component.

I-7 Errors never propagate from an error model instance to itself.

 SOFTWARE ENGINEERING INSTITUTE | 27

5.3 ERROR PROPAGATION ACROSS ERROR MODELS

Let us assume that we have the following AADL architecture model: two system components are
connected through a unidirectional data port connection that goes from Component1 to
Component2, as shown in Figure 6. We assume that the behavior of Component2 depends on
that of Component1, because Component2 receives data from Component1. We also as-

sume that the connection is perfect (i.e., it never fails). We associate error models to
Component1 and Component2, choosing to associate the same generic error model to both
components, dependent.general as introduced in Table 7 on page 13.

Figure 6: End-to-End Propagation

We can apply the dependency and inheritance rules from Sections 5.2.1 and 5.2.2 to the AADL
model of Figure 6. Specifically, rules D-9, D-10, and I-5 apply to this architecture. Component1

can propagate errors into the connection, and the connection can propagate errors into
Component2. Also, propagations that go into a connection affect the ultimate destination of that

connection if the connection itself does not have an error model instance. Consequently, outgoing
propagations defined in the error model dependent.general and associated with
Component1 can affect the error model dependent.general associated with Compo-
nent2, as the error model dependent.general declares incoming propagations whose

names match those of the outgoing propagations. The name matching rule does not apply if a
Guard_In condition is defined for an incoming propagation (see Section 5.4).

In short, due to the port connection from Component1 to Component2, errors are propagated
from the error model of Component1 to the error model of Component2. Because port con-
nections are directional, an error cannot be propagated from Component2 to Component1
unless there is also a port connection from Component2 to Component1—even though the
error model of Component2 declares outgoing propagations that match incoming propagations
in the error model of Component1.

As shown in Table 7 on page 13, the transition triggered by the FailureVisible in propaga-
tion in the error model dependent.general associated with Component2 is a conse-
quence of the transition that triggers the out propagation FailureVisible in the error
model dependent.general associated with Component1. Both transitions occur accord-
ing to the Occurrence property value of the out propagation in Component1.

If the Occurrence property probability value is not 1, Component2 might be affected in two
ways: (1) it might transition into the Failed state after Component1 transitions into the

Component1 Component2

Model =>
dependent.general

Model =>
dependent.general

28 | CMU/SEI-2007-TN-043

Failed state when the Fail event occurs in Component1, and (2) it might not observe the
error of Component1 (i.e., there is a certain probability that the error in Component1 does not
propagate and thus does not affect the behavior of Component2).

5.4 FILTERING OF INCOMING PROPAGATIONS

Propagations coming to a component can be filtered by using a Guard_In property. In the fol-

lowing subsections, we describe the role of this property and how it is used.

5.4.1 Role of a Guard_In Property

A Guard_In property allows you to

• unconditionally map the name of an incoming propagation and error state declared in a
sender error model instance to a propagation name declared in the receiving error model

• conditionally map an incoming set of propagations and error states into a single (or a set of)
in propagation(s)

• conditionally mask incoming propagations

5.4.2 Guard_In Property Application

A Guard_In property may be declared to apply to requires and provides data access fea-

tures, incoming ports (data, event, or event data), and server subprogram features of a component.
As a result, the Guard_In property is evaluated when error propagations occur into a component
through those features (e.g., through an in data port or a shared data object or when there is a

change in the error state of a sender component). Each component feature can only have one
Guard_In property.

A Guard_In property consists of an ordered set of rules for incoming propagations. Each rule
maps at least one outgoing (out or in out) propagation or error state from error models of
connections or connected components (when clause) or an error state of the component itself to
an incoming (in or in out) propagation; or, it specifies that the propagation or error state

should be masked.

This mapping is illustrated in Figure 7. The Guard_In property is defined for ComponentA.
The Guard_In rule is defined for the incoming error propagation InProp for port in1 of
ComponentA (the outlined arrowed line in Figure 7). The rule condition is determined by exam-
ining the error states of ComponentA as well as the error states and outgoing error propagations

of connections or connected components (shown as double-lined arrows for a component). The
result of the guard rule can affect the error state transition if InProp is named as part of the tran-

sition condition (shown as solid arrow).

 SOFTWARE ENGINEERING INSTITUTE | 29

Figure 7: Guard_In Mapping

In Table 19, the in_propagation_x expression refers to a name of an incoming (in or in
out) propagation declared in the error model of the component for which the rule is being speci-
fied. The when clause represents the guard expression to be evaluated to determine whether the

rule applies.

Table 19: Guard_In Property Use

Guard_In =>
 in_propagation_1 when port_name_1[out_propagation_1],
 in_propagation_2 when port_name_2[error_state_1]
 and port_name_3[error_state_2],
 mask when port_name_2[error_state_1] or
 port_name_3[error_state_2]

 applies to port_name_1;

The outgoing propagation(s) or error state(s) is specified in square brackets. If a reference does
not include a bracketed outgoing propagation or error state, the initial error state is implied. If the
connection does not have an error model, the outgoing propagation or error state in the error
model of the component that is the origin of the connection is referenced. The single port refer-
ence for in_propagation_1 in Table 19 represents an unconditional name mapping of the
outgoing propagation name or error state of the origin into the in propagation name.

The when clause can

• reference a single incoming (in or in out) component port, requires data access, or

server subprogram feature

• reference to an outgoing propagation or error state in the error model of the connection
through the feature

− If the connection does not have an error model, the outgoing propagation or error state in
the error model of the connected component(s) is referenced.

• specify a condition that refers to multiple component features and an outgoing propagation
or error state in the error model of the connection through the feature

− This condition specifies how propagations and error states of origins of component in-
teractions are handled. The condition may represent a voting protocol to determine
whether the propagations and error states are masked or cause an error state transition
through the named in propagation.

s

s

Outprop

Guard_In

Inprop s1

ComponentA

Error state

In

30 | CMU/SEI-2007-TN-043

• include references to error states in the component for which the Guard_In mapping is de-

fined

− The references are included by referring to self and an error state of the component’s er-
ror model, which allows filtering or masking of propagated errors based on the error
state of the component that receives the propagations.

• contain the following logic operators: not, and, or, ormore, orless

− The not operator has the highest precedence, followed by the and operator. The other

operators have equal precedence and are evaluated from left to right in use, except where
parentheses specify otherwise. A numeric literal appearing in an ormore or orless

operator must be a positive integer.

• specify others

− The when clause of the last rule might specify others, meaning that the rule applies if

none of the previous rules apply.

Guard_In expressions are evaluated each time an error is propagated into a component through

the feature for which the guard is specified. They are evaluated in the order of declaration until the
first one is found whose Boolean error expression evaluates to TRUE. If a rule with
in_propagation before the when clause evaluates to TRUE, the incoming propagation is

considered to have occurred and caused a transition that names the incoming propagation. If a
mask rule evaluates to TRUE, the propagation is suppressed and does not result in a transition
between states for the receiving error model. If none of the guard rules evaluates to TRUE and
there is no others clause, the specification is erroneous.

Observations

• The evaluation rules only require that guards be defined for those combinations of states and
propagations that might occur for a specified system in the operational scenario being used
for analysis.

• The AADL standard Error Model Annex specifications allow propagation filtering to be as-
sociated with component dependencies through port connections, shared access, and server
subprogram calls. However, it does not support filtering or masking of error propagations
through bindings to execution platform components.

5.4.3 Error Propagation Mappings

A Guard_In property maps outgoing propagation or error state names of components that it

connects with the component to incoming propagations of the error model. Table 20 shows sev-
eral examples of name mappings. In this table, it is assumed that the component connected
through the port Sensor1 has the error model transientpermanent.general asso-
ciated, and the component connected through the port Sensor2 has an error model as-

sociated with two outgoing propagations named Error1 and Error2.

The first Guard_In property (see in Table 20) defines a mapping of an error state
Permanent_Error in an error model associated with a connection or connected component
that can impact the given component through Sensor1 into the incoming error propagation
FailedVisible of the error model of the impacted component computer.personal. This

 SOFTWARE ENGINEERING INSTITUTE | 31

guard is specified to apply only to connection or component error models reachable through
Sensor1.

The second Guard_In property (see in Table 20) defines a mapping of several outgoing
propagations Error1 and Error2 in an error model into an incoming error propagation
FailedVisible declared in the error model associated with the impacted component
computer.personal. This guard is specified to only apply to connection or component error
models reachable through Sensor2.

Table 20: Error Propagation Mappings

system computer
features
Sensor1: in data port;
Sensor2: in data port;
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => My_ErrorModels::transientpermanent.general;
 Guard_In =>
 FailedVisible when Sensor1[Permanent_Error]
 applies to Sensor1;
Guard_In =>
 FailedVisible when Sensor2[Error1,Error2]
 applies to Sensor2;
 **};
end computer.personal;

Observations

Error propagation mappings can be used for several purposes.

1. If the error models of two connected components or a component and the connection have
error propagations with different names, the outgoing error propagation names of one model
can be mapped to incoming error propagation names of the second model.

2. If the error model that is the origin of an error propagation has multiple error propagations to
distinguish between different errors but the error model of an impacted component treats all
errors the same way, the different types of outgoing error propagations can be mapped into
the same incoming propagation. (For example, in Table 20, see the error model connected
through Sensor2).

3. If the error model that is the origin of an error propagation does not have any outgoing prop-
agations (i.e., has not been designed to explicitly propagate out error information), the de-
pendent components can observe the error state of the originating component and map it into
an incoming propagation. This is done in the example in Table 20 for the error model
transientpermanent.general, which does not have any propagation.

4. Assume that an impacted component has two incoming features and the components that are
connected through these features use the same error model definition,
dependent.general. If the impacted component wants to distinguish between errors

propagated through each feature, a separate guard can be defined for each component feature
that maps the FailedVisible outgoing propagation into separate incoming propagations

32 | CMU/SEI-2007-TN-043

of the impacted component error model. Each of these incoming propagations can trigger a
transition to a different error state in the impacted component error model.

5.4.4 Error Propagation Filtering and Masking

The Guard_In property can specify filters for error propagations from other components that

reflect voting protocols used to determine whether the impacted component should change its cur-
rent error state. Using the same logic expressions, the Guard_In property can also specify the

conditions under which error propagations are masked. The logic expression can name outgoing
propagations, as well as error states of the components that can impact the given component. In
addition, the logic expression can include conditions that reflect the current error state of the im-
pacted component.

Table 21: Masking and Filtering of Error Propagations

system computer
features
Sensor1: in data port;
Sensor2: in data port;
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => My_ErrorModels::dependent.general;
 Guard_In =>
 mask when (Sensor1[FailedVisible] and Sensor2[ErrorFree])
 or (Sensor1[ErrorFree] and Sensor2[FailedVisible]),
 FailedVisible when (Sensor1[FailedVisible] and
Sensor2[FailedVisible])
 applies to Sensor1, Sensor2;
 **};
end computer.personal;

Table 21 shows an AADL system component that has two in ports, Sensor1 and Sensor2.
We associate the error model dependent.general (detailed in Table 7 on page 13) with the
component implementation. We declare a Guard_In property that applies to both in ports. We

assume that the components connected to Sensor1 and Sensor2 both have associated error
models dependent.general.

The Guard_In property describes the following propagation controls:

• When a FailedVisible propagation (declared as an out propagation in the error model

associated with a component connected to a sensor port) comes through only one of the sen-
sor ports, that propagation is masked. As a result, it will not have an impact on the
computer.personal component implementation.

• When FailedVisible propagations (declared as out propagations in error models asso-

ciated with components connected to the sensor ports) come simultaneously through both
sensor ports, a FailedVisible propagation (declared as an in propagation in the error
model associated with the computer.personal component implementation itself) oc-
curs in the error model of the impacted component computer.personal.

 SOFTWARE ENGINEERING INSTITUTE | 33

Observations

• The Guard_In property can refer both to states and out propagations in its logic expres-
sion. In Table 21 (right hand side of the when clause, after the or operator), ErrorFree is
a state while FailedVisible is an out propagation.

• The Guard_In property may reference an error state of a component that can impact an-

other component. This flexibility permits the specification of error propagations between de-
pendent components, when the error model of the origin component does not have outgoing
propagations specified for error states. Notice that this action is equivalent to specifying a
transition from an error state to itself with an out propagation label with an occurrence

probability of 1 and naming the propagation in the Guard_In expression.

• The Guard_In property can include an error state of the impacted component in the logic

expression, allowing the definition of conditions (under which propagations affect a compo-
nent) that are dependent on the error state of the impacted component. For example, a com-
ponent may respond to propagations from other components only if the impacted component
is in the Transient_Error state.

5.4.5 Connection-Specific Filtering

Different features of a component may have distinct Guard_In properties through the declara-
tion of Guard_In properties with an applies to clause to name the specific data access fea-

tures, ports (data, event, or event data), and server subprogram features of a component to which
the Guard_In property applies. The Guard_In property of a given feature is evaluated only
for error propagations that occur into a component through that feature (e.g., through an in data

port or a shared data object). It is forbidden to declare several Guard_In properties for the same
feature. This prohibition ensures that only one Guard_In property is evaluated and that logic

rules applying to a same feature do not conflict.

Observations

• Distinct Guard_In properties for different component features allow different name map-

pings to be specified for different incoming propagations.

• If distinct Guard_In properties that specify filter or masking conditions are specified for

different features of a component, the same feature cannot be referred to in the different
Guard_In properties.

5.5 FILTERING OF OUTGOING PROPAGATIONS

Error propagations out of a component can be filtered by using a Guard_Out property. The fol-

lowing subsections show the role of this property and how it is used.

5.5.1 Role of a Guard_Out property

A Guard_Out property allows you to specify pass-through of error propagations under the fol-

lowing conditions:

• unconditionally pass incoming propagations from different senders as outgoing propagations
of the error model associated with the component whose implementation contains the
Guard_Out property

34 | CMU/SEI-2007-TN-043

• conditionally pass incoming propagations or error states as outgoing propagations of the er-
ror model associated with the component whose implementation contains the Guard_Out

property

• conditionally mask incoming propagations from different senders

An incoming propagation is identified by naming an incoming (in or in out) port and an out-
going (out or in out) propagation of the connection or connected component.

5.5.2 Guard_Out Property Application

A Guard_Out property may be declared to apply to provides data access features, outgoing

ports (data, event, or event data), and server subprogram features of a component. The
Guard_Out property, consequently, is evaluated when error propagations occur into a compo-
nent through the features specified in the guard condition (e.g., through an in data port or a data

access feature or when there is an error state change in the error model associated with an origin
error model). The Guard_Out property determines under what conditions the outgoing propaga-

tion occurs or is masked. Each component feature of the above-mentioned kinds can only have
one Guard_Out property.

A Guard_Out property has a similar structure to a Guard_In property. A Guard_Out prop-

erty consists of an ordered set of rules for outgoing propagations. Each rule maps error states of
the component itself and outgoing (out or in out) propagations or error states from error mod-
els of connections or connected components (when clause) through an incoming (in or in out)
port to an outgoing (out or in out) propagation; or, it specifies that they should be masked.

The functioning of a Guard_Out property is illustrated in Figure 8, using the same symbols as in

Figure 7 (on page 29).

Figure 8: Guard_Out Mapping

In Figure 8, a Guard_Out property is defined for the outgoing propagation Outprop through
port Out1 of ComponentA. This propagation is conditional on error states of ComponentA
and on the error state or outgoing propagation Outprop of the component connected to
ComponentA.

In Table 22, the out_propagation_x expression refers to a name of an out or in out

propagation declared in the error model of the component for which the rule is being specified.
The when clause represents the guard expression to be evaluated to determine whether the guard

rule applies.

s

s

Outprop

Guard_Out

Outprop
s1

Component A

Error state

Out1 In1

Out1

 SOFTWARE ENGINEERING INSTITUTE | 35

Table 22: Guard_Out Property in Use

Guard_Out =>
 out_propagation_1 when port_name_1[out_propagation_1],
 out_propagation_2 when port_name_2[error_state_1]
 and port_name_3[error_state_2],
 mask when port_name_2[error_state_1] or
 port_name_3[error_state_2]
 applies to feature_Name_1;

The when clause can

• provide a single reference to an incoming (in or in out) component port, requires

data access, or server subprogram feature and an outgoing propagation or error state in the
error model of the connection through the feature

− In this case, the when clause represents an unconditional name mapping or masking of

the incoming propagation.

− The outgoing propagation(s) or error state(s) are specified in square brackets, as shown
in Table 22. If a reference does not include a bracketed outgoing propagation or error
state, the initial error state is referred to implicitly. If the connection does not have an er-
ror model, the outgoing propagation or error state in the error model of the connected
component(s) is referenced.

• specify a condition that refers to multiple component features and outgoing propagations or
error states in the error model of the connection through the features

− If the connection does not have an error model, the outgoing propagation or error state in
the error model of the connected component(s) is referenced. This condition describes
the circumstances under which incoming propagations and error states are passed
through (by the component error model) or masked.

• include references to error states in the component for which the Guard_Out mapping is

defined by including references to an error state of the component’s error model

− This action allows pass-through or masking of incoming error propagations to occur
conditional on the error state of the component.

• contain the following logic operators: not, and, or, ormore, orless

− The not operator has the highest precedence, followed by the and operator. The other

operators have equal precedence and are evaluated from left to right except where paren-
theses specify otherwise. A numeric literal in an ormore or orless operator must be a

positive integer.

• specify others

− The specification of others means that the rule applies if none of the previous rules

apply.

The Guard_Out expressions are evaluated each time an error is propagated into a component

through the feature for which the guard is specified. They are evaluated in the order of declaration
until the first one is found whose Boolean error expression evaluates to TRUE. If a rule with
out_propagation before the when clauses evaluates to TRUE, the outgoing propagation is

considered to occur and is propagated to connections or dependent components of the feature to

36 | CMU/SEI-2007-TN-043

which the Guard_Out applies. If a mask rule evaluates to TRUE, the propagation is suppressed

and does not result in a transition between states for the receiving error model. If none of the
guard rules evaluates to TRUE, and there is no others clause, the specification is erroneous.

Observations

• The evaluation rules only require guards be defined just for those combinations of states and
propagations that might occur for a specified system in the operational scenario being used
for analysis.

• The current AADL error model annex specification allows outgoing propagation filtering to
be associated with component dependencies through port connections, shared access, and
server subprogram calls. However, it does not support filtering or masking of error propaga-
tions through bindings to execution platform components.

5.5.3 Error Propagation Pass-Through Mappings

The Guard_Out property can specify mappings of incoming propagations or error states from

other components to outgoing propagations of the error model of components. This pass-through
can be specified unconditionally or dependent on the error state of the component with the
Guard-Out property.

Table 23 shows several examples of pass-through mappings. In these examples, it is assumed that

• the component connected through the port Sensor1 has the error model
TransientPermanent.general

• the component connected through the port Sensor2 has an error model associated with two
outgoing propagations named Error1 and Error2

The first Guard_Out property (see in Table 23) defines a pass-through mapping of an error

state in a component error model into an outgoing error propagation of the error model. This
guard is specified to only generate an outgoing propagation through port Output1.

The second Guard_Out property (see in Table 23) defines a mapping of several outgoing

propagations in an error model (associated with a component that can affect the given component)
into an outgoing error propagation of the error model of the affected component. This guard is
specified to only generate an outgoing propagation through port Output2.

 SOFTWARE ENGINEERING INSTITUTE | 37

Table 23: Error Propagation Pass-Through Mappings

system computer
features
Sensor1: in data port;
Output1: out data port;
Sensor2: in data port;
Output2: out data port;
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => My_ErrorModels::TransientPermanent.general;
 Guard_Out =>
 FailedVisible when Sensor1[Permanent_Error]
 applies to Output1;
Guard_Out =>
 FailedVisible when Sensor2[Error1,Error2]
 and self[Failed]
 applies to Output2;
 **};
end computer.personal;

Observations

Error propagation pass-through mappings can be used for several purposes:

• A component can observe the error states of another component or incoming connection and
map them into an outgoing error propagation.

• A component can pass through error propagations from other components by mapping them
into one of its own outgoing error propagations.

• The error propagations from other components can be passed on through one, several, or all
outgoing features of the component. In other words, the component can route its observation
of error propagations or error states from other components as one of its own outgoing error
propagations.

• The error propagations from other components can be passed through when the component
is in certain error states. In other words, pass-through can be conditional on the error state of
the component performing the pass-through.

• The conditions for passing through incoming propagations may be different from the condi-
tions under which the component itself handles incoming propagations. The latter conditions
are captured in a Guard_In, whose in propagation is then named in a error state transition.

• If the condition for handling incoming propagations by the component and for passing the

incoming propagations through is the same, it is better to trigger the outgoing propagation
from a component error state instead of repeating the condition in a Guard_In and the

Guard_Out property.

38 | CMU/SEI-2007-TN-043

5.5.4 Pass-Through Filtering and Masking

The Guard_Out property can specify filters for error propagations from other components that

reflect voting protocols used to determine whether the observed incoming propagations and error
states should be visible to others. Using the same logic expressions, the Guard_Out property

can also specify the conditions under which error propagations and error states are masked. The
logic expression can name outgoing propagations and error states of the components that can af-
fect the given component. In addition, the logic expression can include conditions that reflect the
current error state of the affected component.

Figure 9 shows an example using the graphical AADL notation of architecture with a
Guard_Out property on an out port. The out propagations sent through the SensorFailed
out port of the computer.personal system implementation depend on in propagations
arriving as inputs on the Sensor1 and Sensor2 in ports. The components connected to

Sensor1 and Sensor2 are assumed to have error models dependent.general.

Figure 9: AADL Architecture with Guard_Out Property

Table 24 shows the AADL system component computer.personal (with its two in ports,
Sensor1 and Sensor2, and one out port, SensorFailed). We associate the error model

dependent.general (shown in Table 7 on page 13) with the component implementation. We
declare a Guard_Out property that applies to the SensorFailed out port. The

Guard_Out property describes the following propagation control.

• When a FailedVisible propagation (declared as an out propagation in the error model
associated with a component connected to Sensor1 or Sensor2) comes through only one

of the sensor ports, that propagation is masked. As a result, the masked propagation will not
affect the computer.personal component implementation.

• When FailedVisible propagations (declared as out propagations in error model asso-
ciated with components connected to Sensor1 or Sensor2 and as in propagations in the

error model instance associated with the computer.personal component implementa-
tion itself) come simultaneously through both sensor ports, a FailedVisible propaga-
tion (declared as an out propagation in the error model associated with the
computer.personal component implementation itself) is sent out through the out port

SensorFailed.

computer.personal Sensor_Failed

Guard_Out

Sensor1

Sensor2

Dependent.general

Dependent.general

 SOFTWARE ENGINEERING INSTITUTE | 39

Table 24: Guard_Out Example

system computer
features
Sensor1: in data port;
Sensor2: in data port;
SensorFailed: out data port;
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => My_ErrorModels::dependent.general;
 Guard_Out =>
 mask when (Sensor1[FailedVisible] and Sensor2[ErrorFree])
 or (Sensor1[ErrorFree] and Sensor2[FailedVisible]),
 FailedVisible when (Sensor1[FailedVisible] and
Sensor2[FailedVisible])
 applies to SensorFailed;
 **};
end computer.personal;

Observations

• The Guard_Out property can refer both to states and out propagations. In Table 24,
ErrorFree is a state while FailedVisible is an out propagation. Reference to error

states allows us to observe component error models without outgoing propagations and con-
ditionally produce outgoing propagations.

• The Guard_Out property can include an error state of the affected component in the logic

expression, which allows us to define conditions under which propagations dependent on the
error state of the impacted component actually affect a component. For example, a compo-
nent may respond only to propagations from other components if the affected component is
in the Transient_Error state.

• Distinct Guard_Out properties can be associated with different features of a component.

Consequently, propagations depending on the same inputs that are sent out through different
features can be different.

5.6 ERROR STATE PROPAGATION

In some dependability analysis scenarios, it is natural to think in terms of propagation of error
states. Propagation can be achieved in two ways:

1. representation of guard conditions in terms of error states only

2. interpretation of error propagations as representing inferred error states

We will examine each modeling approach in detail.

5.6.1 Use of Error States in Conditions

You can restrict the conditions of Guard_In properties to refer only to error states of connection

or connected component error models and the component’s own error states. In other words,

40 | CMU/SEI-2007-TN-043

Guard_In conditions do not refer to outgoing propagations of connections or connected compo-

nents.

Similarly, you can restrict the Guard_Out conditions to refer only to error states of connection

or connected component error models and the component’s own error states. However, since out
propagations are not named in Guard_In conditions, we have to reflect those Guard_Out con-
ditions in a different way. Guard_Out conditions based on the component error states them-
selves become part of the Guard_In condition of the recipient component. Guard_Out condi-

tions based on the error states of incoming connections or connected components can be mapped
into a new Guard_In condition of the component with the Guard_Out property. This new in

propagation results in an error state transition, and the error state being entered is observed by the
Guard_In condition of the recipient component.

In summary, this modeling approach leads to error models that utilize error events, error states,
and in error propagations but not out error propagations. It assumes that the error state of a

component is immediately observable by other components.

5.6.2 Use of Inferred Error States

The Error Model Annex standard defines inferred error states as follows:

For each out or in out propagation defined in an error model, the inferred error states for
that propagation are the set of error states named as a source state for any transition la-
beled with that propagation. Note that there may be more than one inferred error state for
an error propagation name [SAE-AS5506/1 2006].

This definition means that observing a propagation from another component or a connection can
be interpreted as observing the error state that is the source of the transition triggering the propa-
gation.

Figure 2 in on page 15 illustrates a patterned way of propagating an error state through an error
propagation named in a transition from the error state to itself. In that case, naming the error prop-
agation in a condition is equivalent to naming the error state with the loopback transition if the
Occurrence probability of the propagation is 1.

Occurrence value less than one allow the model to reflect the fact that another component may

observe the error state of a component with some delay or may not always observe the error state.
The latter scenario is typically represented by an error state that is entered according to some dis-
tribution. The error state then has two outgoing transitions, one with fixed probability p and the
second with fixed probability 1-p. One is labeled with an out propagation, reflecting that an

error is observed with probability p, while the other reflects that the error state remains unob-

served.

Figure 10 illustrates the propagation of an observed fault. Notice that the out propagation is trig-

gered by a transition from one error state to another error state. According to the definition of the
Error Model Annex standard, the inferred error state is the error state from which the transition
originates.

 SOFTWARE ENGINEERING INSTITUTE | 41

Figure 10: Observed Fault

In summary, the inferred error state approach utilizes error events, error states, in error propaga-
tions, and out error propagations. This approach allows users to define outgoing and pass-

through error propagation conditions separately from incoming error propagation conditions. Fur-
thermore, it can capture delayed and sporadic observation of faults in other components.

5.7 COMPARISON BETWEEN GUARD_IN AND GUARD_OUT

Sections 5.4 and 5.5 explained how to use the propagation control properties Guard_In and
Guard_Out. Table 25 shows the similarities and differences of these two properties from a func-

tional view and an input/output view.

You might use a Guard_In if the decision-making (i.e., voting, filtering) layer is placed at the
input interface of a component. A Guard_Out might be more appropriate if the decision-making

functionality exists as a component in its own right.

Table 25: Symmetry and Asymmetry between Guard_In and Guard_Out

 Guard_In Guard_Out

Functional
View

Applies to incoming features

Its evaluation result has an impact on the inter-
nal behavior of the component that declares it.

Applies to outgoing features

Its evaluation has an impact on components
that depend on the component that declares it.

Input/Output
View

Input: propagations from the component’s
environment

Output: propagations to the component itself

Input: propagations from the component’s
environment

Output: propagations to the component’s envi-
ronment

ErrorFree Faulty

ObservedFault

UnobservedFault

Fault: fh

Observed: p

UnObserved: 1-p

42 | CMU/SEI-2007-TN-043

6 System Instance Error Models

An AADL architecture model is hierarchical. The level of detail it contains depends on the stage
of the design and development process. For example, a system may initially be modeled as a par-
tial model to the level of subsystems and later completed to the level of threads. Both partial and
complete models can be instantiated to produce system instance models for system analysis.

Error models can be associated with components of a system model at any level of the component
hierarchy. For example, an error model can be associated with the root-level system component to
represent an abstracted error model of the system instance. An instance of this error model repre-
sents the system instance error model as a finite state stochastic automaton. Similarly, error mod-
els can be associated with each of the leaf components in the system hierarchy (i.e., individual
application threads and hardware components). In this case, the system instance error model con-
sists of the set of component error model instances and connection error model instances. The
system instance error model represents a set of concurrent stochastic automata.

Error models can be associated with several levels of the system hierarchy at the same time. For
example, an error model can be associated with an application thread, an enclosing application
(sub)system, and the system as a whole. In this case, the error model higher in the system hierar-
chy is an abstraction of the contained error models. The AADL Error Model Annex standard of-
fers two approaches for representing error model abstractions:

1. A basic error model represents the behavior of a component and its subcomponents in the
presence of faults as an abstraction. (The error models presented in Sections 4 and 5 are ba-
sic error models.)

2. A derived error model represents the behavior of a component in the presence of faults as a
function of the error states of its subcomponents.

Sections 6.1 and 6.2 discuss these two approaches.

6.1 ABSTRACTION WITH BASIC ERROR MODELS

A basic error model associated with a component or connection consists of an error model type
and implementation identified by the Model property, any component-specific tailoring with the
Occurrence property, and component-specific error propagation filtering and masking defined
through Guard_In and Guard_Out properties.

A basic error model describes the behavior of a component in terms of error events intrinsic to the
component, error states, error propagations from and to components this component interacts
with, and error state transitions that are triggered by intrinsic error events or incoming error prop-
agations and initiate outgoing error propagations. The behavior of a component in the presence of
faults is defined without referring to any subcomponent. Consequently, a basic error model repre-

 SOFTWARE ENGINEERING INSTITUTE | 43

sents the behavior of a component or connection in the presence of faults as an abstraction inde-
pendent of subcomponent error models.

6.1.1 When to Use Basic Error Models

You can use a basic error model as an abstraction if an existing AADL architecture model with
associated error models for components and connections is very detailed and requires a high level
of processing. In those instances, a tradeoff between the accuracy and the complexity of the model
is necessary, and some of the model’s details must be ignored to produce a lower-fidelity error
model. The lower-fidelity error model can be achieved by associating a basic error model to a
component containing subcomponents, so that the error models associated to the subcomponents
are ignored by the analysis. Besides states, events, and transitions, the basic error model of a
component includes in and out propagations that abstractly describe the actual error propaga-

tions between contained subcomponents and external component. Issues about the relationship
between abstracted error models and higher fidelity error models are discussed in the work by
Binns and Vestal [Binns 2004].

6.1.2 How to Use Basic Error Models

If both a component and its subcomponents have associated error models, you can use the
Model_Hierarchy property to indicate whether the enclosing basic error model should be

considered as the abstraction and the error models associated with subcomponents should be ig-
nored by the analysis. This property allows you to annotate an AADL system model with error
model information at different levels of the system hierarchy and choose the level of fidelity for
analysis. Table 26 shows how to use the Model_Hierarchy property to specify that an error

model is abstract.

In Table 26, the system implementation computer.personal contains two subcomponents:
hardware.nominal and software.nominal. Error models are associated with each of the
subcomponents. An error model is also associated to computer.personal itself. It is declared
as abstract. Thus, the analyses will ignore the error models declared for subcomponents. In

other words, an abstract error model at a higher level of the component hierarchy abstracts the
details of the subcomponent error models away.

Note that the Model_Hierarchy property declaration is not mandatory, because it is implied

by the association of a basic error model. Consequently, you have to add or remove error models
and guard declarations in parents to change the fidelity at which models are analyzed.

44 | CMU/SEI-2007-TN-043

Table 26: Abstract Error Model Specified Using Model_Hierarchy

system implementation hardware.nominal
annex Error_Model {**
 Model => forHardware.general;
 **};
end hardware.nominal;

system implementation software.nominal
annex Error_Model {**
 Model => forSoftware.general;
 **};
end software.nominal;

system implementation computer.personal
subcomponents
 HW: system hardware.nominal;
 SW: system software.nominal;
annex Error_Model {**
 Model => dependent.general;
 Model_Hierarchy => abstract; **};
end computer.personal;

6.2 DERIVED ERROR MODELS

A derived error model is a component error model whose error state is determined by a derived
state mapping of subcomponent error states and error states and connected components’ error
propagations.

A derived error state mapping, described in Table 27, specifies the condition under which a com-
ponent is in its error state in terms of

• error states of subcomponents

• error states or error propagations of connections or connected components

Table 27: Derived State Mapping Structure

Derived_State_Mapping =>
 ErrorFree when HW[ErrorFree] and SW[ErrorFree],
 Failed when others;

A derived error state mapping is illustrated in Figure 11, using the same symbols as in Figure 7 on
page 29. The dashed double-line arrow indicates that subcomponent error states are inferred when
an outgoing error propagation of a subcomponent is named. The inference rules are described in
Section 6.2.2. A derived error model does not have error events or explicitly declared error state
transitions.

 SOFTWARE ENGINEERING INSTITUTE | 45

Figure 11: Derived Error State Mapping

6.2.1 When to Use Derived Error Models

You can use derived error models to express a high-level view of subcomponent error behavior
through a (possibly) smaller set of error states and outgoing propagations. This expression is ob-
tained through partitions that consist of sets of subcomponent error states that represent

• nominal behavior

• faulty states

• catastrophic states

This kind of partitioning is used in dependability evaluation tools. The report property can be

used to identify the error state partitions of interest.

Note that in probabilistic dependability analyses (like those based on Markov chains and Petri
nets), it is not mandatory to describe the system in terms of derived state-mapping expressions.
These analyses allow deriving the global states from compositions of error states of subcompo-
nents.

6.2.2 How to Use Derived Error Models

A derived component error model is declared through three error model properties:

1. a Model property that identifies an error model type

2. a Derived_State_Mapping property that defines the states of the derived error model

as a function of

a. subcomponent error states and outgoing propagations

b. error states and outgoing propagations of connections

Subcomponents

s

s

s

Outprop

Outprop

Derived State
Map

Component A

46 | CMU/SEI-2007-TN-043

c. error states and outgoing propagations of connected components of a named incoming
component feature

3. a Model_Hierarchy property with the value Derived

When a component error model is declared as derived, the Model property can refer to the error

model type or error model implementation. If it refers to an error model implementation, only the
error model type is considered. In the error model type, only error state and outgoing error propa-
gations are considered to be part of a derived error model. The error states of the component are
determined by evaluating the derived state-mapping logic expression.

A derived state mapping is declared using a Derived_State_Mapping property that contains
a set of derived state mapping rules. If a component has a Model_Hierarchy property associa-
tion of derived, a Derived_State_Mapping property must be declared for that compo-
nent. The Derived_State_Mapping property is ignored if the Model_Hierarchy prop-
erty does not have the value derived.

A Derived_State_Mapping property consists of several state-mapping rules, one for each
error state of the component for which the Derived_State_Mapping is defined.

Table 28 shows how to use the Derived_State_Mapping property. The system implementa-
tion computer.personal contains two subcomponents: hardware.nominal and
software.nominal. (Note: This architecture is the same as in Table 26 on page 44.) Error
models are associated to subcomponents. The implementation computer.personal declares
a Derived_State_Mapping property inside its error annex clause. This property specifies

that the system is ErrorFree when both subcomponents are ErrorFree and Failed other-

wise.

In the when clause of each state-mapping rule, names of subcomponents are followed by optional

bracketed lists of error states or error propagations of the error models associated with the sub-
components. If no bracketed list follows a subcomponent name, the initial state of the subcompo-
nent is inferred. For a named error propagation, the error state is inferred to be the source error
state for error state transitions that refer to it.

The name of a port, data access feature, or server subprogram feature is also permitted in the
when clause. There, the name refers to the error model associated with the connection made to

that component feature. If there is no associated error model for a connection, this naming rule
applies to the error model associated with the component that is the source of that connection.

The when clause can contain the following logic operators: not, and, or, ormore, orless.
The not operator has the highest precedence, followed by the and operator. The other operators

have equal precedence and are evaluated from left to right except where parentheses specify oth-
erwise. A numeric literal appearing in an ormore or orless operator must be a positive inte-

ger.

 SOFTWARE ENGINEERING INSTITUTE | 47

Table 28: Derived State Mapping Property

system implementation hardware.nominal
annex Error_Model {**
 Model => forHardware.general;
 **};
end hardware.nominal;

system implementation software.nominal
annex Error_Model {**
 Model => forSoftware.general;
 **};
end software.nominal;

system implementation computer.personal
subcomponents
 HW: system hardware.nominal;
 SW: system software.nominal;
annex Error_Model {**
 Model => dependent.general;
 Model_Hierarchy => derived;
 Derived_State_Mapping =>
 ErrorFree when
 (HW[ErrorFree] and SW[ErrorFree]),
 Failed when others;
 **};
end computer.personal;

The when clause can contain the keyword others only in the final state-mapping rule. If no
preceding rule is evaluated to TRUE, the final others rule (with others) is used to determine

the current error state of the component.

The state-mapping rules are evaluated in the order of declaration until the first when clause eva-

luates to TRUE. The error state in that rule becomes the current state of the component. If no rules
evaluate to TRUE and there is no others clause, the specification is erroneous.

Among the state-mapping expressions that define states of a set of components there must be no
circular references. A circular reference could cause an error in which a subcomponent is shared
by systems at different levels of the nesting hierarchy or in which two components communicate
with each other and their states are defined by derived state mappings that name the features con-
necting the two components.

Observations

• The mechanisms of abstraction and derivation for hierarchical error models are convenient
for enhancing the readability of the model. Where the model is too big to be processed, it
may be necessary to abstract away error modeling details. Sometimes it may be convenient
to use derived state-mapping expressions to make global states of the system visible. How-
ever, it is not mandatory to use these mechanisms in any model.

• It is worth noting that, unlike basic error models, derived error models cannot have compo-
nent-specific Occurrence properties for their outgoing propagations. The occurrence

probability of a derived outgoing propagation is determined by the error models that the
propagation is derived from.

48 | CMU/SEI-2007-TN-043

7 Operational Modes and Error States

Systems can be in various operational modes. An operational mode might represent a mission-
phased mode of operation—such as takeoff, cruise, or landing in an avionics system. An opera-
tional mode might reflect a particular fault-tolerant system configuration, such as operating the
primary or backup variant of a dual redundant system. An individual system component might
have multiple levels of performance, such as algorithms with different levels of precision.

System operational modes are visible execution states of the embedded software system. They can
be modeled by AADL modes. System components may encounter failures that cause them to go
from an error-free state to an error state. These error states are logical states of a system compo-
nent that may propagate to other system components. Component faults, error states, and error
propagation can be by modeled by AADL error models. Both modes and error states, then, repre-
sent states of a system.

The difference between modes and error states lies primarily in their semantics. Error states result
from occurrences of error events (e.g., faults or repair events), while modes represent operational
states that may be totally independent of error events. Error states are not necessarily observable,
but modes are always observable. For example, an error state might represent a component that is
in an unobserved erroneous state because it has not yet failed at its interface.

Although they are different, modes in operational systems and error states in error models can
affect each other. The embedded software system can observe component error states and might
change to a different fault tolerant configuration in response. Consequently, a logical system state
(the error state) is translated into an operational system mode. Similarly, changes in the opera-
tional system mode might affect logical error states (e.g., a repair action in the embedded software
might cause a component to re-enter an error-free state).

In this section, we discuss the interaction between operational system modes, represented by
AADL modes, and logical error states, represented by error models.

• In Section 7.1, we discuss the use of AADL modes and mode transitions to represent the
dynamics of operational modes.

• In Section 7.2, we describe how changes in the error model of a system can be translated
into events that the operational system can respond to.

• In Section 7.3, we discuss how the logic behind mode transitions, in particular logic that ad-
dresses fault tolerance, can be expressed in AADL.

• In Section 7.4, we present mechanisms that allow error models to reflect changes in opera-
tional states (i.e., respond to mode changes).

• In Section 7.5, we give some modeling examples to illustrate the interaction between modes
and error states in actual systems.

 SOFTWARE ENGINEERING INSTITUTE | 49

7.1 MODELING OF OPERATIONAL MODES

Actual systems can be represented according to one of these scenarios:

1. Operational modes in phased-mission systems model configurations representative of differ-
ent phases in a mission. For example, in the case of an aircraft model, one may distinguish
between the takeoff, cruise, and landing phases. During each of these phases, the system
would have a particular configuration with active components and connections. The fault
management approach may be different during each phase.

2. Fault-tolerance modes model configurations due to the fault-tolerance strategy chosen for the
system or for particular parts of the system. For example, a fault-tolerant duplex system may
have two operational modes corresponding to (a) replica no. 1 delivers the service, replica
no. 2 monitors replica no.1; and (b) replica no. 2 delivers the service, replica no. 1 monitors
replica no.2.

7.1.1 Modes, Mode Transitions, and Events

A mode is a visible operational state of an AADL component. A component can have mode-
specific properties and configurations of subcomponents and connections that are active in spe-
cific modes. Although components and connections can be part of more than one mode, they are
in only one mode—the current mode—at any one time. Mode transitions represent dynamic op-
erational behavior (i.e., switching between configurations and changes to system characteristics
expressed through property values).

Modes and mode transitions can be specified for a component anywhere in the system hierarchy.
Components with modes may contain subcomponents with modes. The AADL defines a system
operation mode to be the set of current mode states of all modal components in the system.

Mode transitions are triggered by events from outgoing (out or in out) event ports of subcom-
ponents, by events from incoming (in or in out) event ports of the component with the mode

transition, or by events raised local to the component. The state machine formed by modes and
mode transitions in a component implementation is deterministic (i.e., from a given mode, only
one mode transition is triggered at a time).

7.1.2 Application of Modes and Events

Mission-phased operational modes may apply to the whole embedded system or they may apply
to a particular subsystem. This scope of applicability determines which components in the system
hierarchy should be declared with modes. For each mode, this system component can be config-
ured with different subsets of active subcomponents and connections and with variants of the
same subcomponent. The subcomponents themselves may be modal; their mode selection can be
represented either by different implementation variants or by mode declarations. Their selection is
driven by events that originate from a system component that acts as operational mode manager.

Usually, phased-mission systems also need modes to represent fault-tolerance mechanisms. In
AADL, a mode cannot have nested modes itself, but a component with modes can also have sub-
components that have modes. If the fault tolerant mode is reflected in a redundancy pattern [Feiler
2004], the application of this redundancy pattern to a system component with mission-phased op-

50 | CMU/SEI-2007-TN-043

erational modes results in nested components. The redundancy component contains the fault tol-
erance modes, while the redundant application component contains the operational modes. An
example of a redundancy pattern is shown in Figure 12. Any events that are passed into the appli-
cation component to control its operational mode must be routed through the redundancy pattern
to the redundant copies.

system implementation PrimaryBackupPattern.impl
 subcomponents
 primary: system sys in modes (Primarymode);
 backup: system sys in modes (Backupmode);
 connections
 inprimary: data port insignal ->
primary.insignal in modes (Primarymode);
 inbackup: data port insignal -> backup.insignal
in modes (Backupmode);
 outprimary: data port primary.outsignal ->
outsignal in modes (Primarymode);
 outbackup: data port backup.outsignal ->
outsignal in modes (Backupmode);
 modes
 Primarymode: initial mode;
 Backupmode: mode;
 end PrimaryBackupPattern.impl;

Figure 12: Dual Redundancy Pattern

Notice that events going through a named port cannot be distinguished because they do not have
names or other identifying data. Thus, any event going through a port that is specified in a mode
transition will trigger that mode transition. By using separate event ports, you can specify that
different events can trigger different mode transitions.

If a mode transition lists multiple event ports, an event through any of the ports can trigger the
transition. For mode transitions that name multiple event ports as their trigger condition, logic
represented by the or operator is assumed. For dependability analyses, it is desirable to specify
transition logic other than or logic. We will show in Section 7.2.1 how mode transition logic can

be described through the Guard_Transition property of the error model.

7.2 GENERATION OF SYSTEM EVENTS

The AADL allows us to model logical error states separately from the operational mode of the
running application. It also establishes a connection between the logical error states and the opera-
tional mode by using Guard_Event properties to translate logical error states into actions in the

form of port events on the running system. Those events can initiate the dispatch of an aperiodic
or sporadic thread and trigger a mode transition.

7.2.1 Role of a Guard_Event Property

The Guard_Event property links the error states and error propagations in the error model to

port events in the AADL architecture model. It is intended to map error conditions into architec-
tural events (i.e., to specify that an architectural event is raised depending on the error model log-

 SOFTWARE ENGINEERING INSTITUTE | 51

ic). In particular, this property can be used to specify that a “real” event is raised in the system
according to error conditions detected by a voting protocol implemented in the component.

7.2.2 Guard_Event Property Application

A Guard_Event property is associated with an outgoing (out or in out) event port of the

component that declares the property. The generated event will be sent out of the component
through that port. A Guard_Event can also specify that an event is raised local to the compo-

nent (e.g., an event that control mode transitions of the component itself.3) Such an event is not
available outside the component, unless explicitly connected to an outgoing event port.

7.2.3 How to Use Guard_Event Properties

A Guard_Event property specifies that an event is generated through an outgoing event port.

The outgoing event port can be named in a mode transition of the enclosing component, or the
event can be routed to another component through an event connection. The ultimate destination
of this event connection can be a thread event port that results in the dispatch of the thread, or it
can be a mode transition if the event port is named in a mode transition. Consequently, a dispatch
or mode transition will occur when a specific condition is detected in the system error model.

Table 29 shows how a Guard_Event property can be used. The example declares a system hav-
ing two in data ports, Sensor1 and Sensor2, and one out event port, SensorsFailed.

Table 29: Guard_Event Property

system computer
features
Sensor1: in data port;
Sensor2: in data port;
SensorsFailed: out event port;
end computer;

system implementation computer.personal
annex Error_Model {**
Model => My_ErrorModels::dependent.general;
Guard_Event =>
 Sensor1[FailedVisible] and Sensor2[FailedVisible]
 applies to SensorsFailed;
**};
end computer.personal;

The error model annex subclause associated with the system’s implementation contains the error
model dependent.general and a Guard_Event property declaration applying to the out
event port SensorsFailed. The Guard_Event property specifies that an event will be
raised and sent out of the component through the port SensorsFailed if error propagations
FailedVisible arrive through Sensor1 and Sensor2. The propagations referred to in the

3 The ability to reference local events is addressed in errata to the AADL standard.

52 | CMU/SEI-2007-TN-043

logic expression are declared as in out propagations in the type of the error model
(dependent.general) of the system and named as out error propagation action in an error

state transition or have a Guard_Out rule.

The event triggered by the Guard_Event property through the port SensorsFailed can be

passed through an event port connection to other components. This event may then trigger a
thread dispatch or mode transition, or it may be observed as an “alarm” event in the vent port
queue of a health monitoring thread. In other words, the observation of FailedVisible

propagations arriving at the computer system may cause thread dispatches or mode transitions, or
those propagations may become an observable events in the application itself.

Notice that the AADL architecture model in Table 29 is the same as the one shown in Figure 9 on
page 38 for Guard_Out properties. The difference between Guard_Out and Guard_Event
properties lies in the type of event generated. In the case of the Guard_Out property, an (error)
propagation is generated; for the Guard_Event property, a port event is generated.

A separate Guard_Event property must be defined for each event port and each event local to
the component. The applies to clause identifies the event port by name and a local event by
self.eventname. Note that local events do not have to be explicitly declared; they are just

named in mode transitions. Local events can be connected to outgoing event ports by an event
port connection whose source is self.eventname, making them externally visible.

The condition under which a port event occurs is specified by a logic expression that can refer to

• component features and outgoing propagations or error states in the error model of the con-
nection through the features

− If the connection does not have an error mode, the outgoing propagation or error state in
the error model of the connected component(s) is referenced.

• error states declared in the error model associated with the component whose implementa-
tion contains the Guard_Event property

− The special keyword self is used in this case (i.e., self[ErrorFree]).

Error propagations or error states can be listed in a bracketed list following the component feature
name or the keyword self. If no bracketed list is given, it is assumed that the initial state of the

connected component is referred to.

The logic expression can contain the following logic operators: not, and, or, ormore,
orless. The not operator has the highest precedence, followed by the and operator. The other

operators have equal precedence and are evaluated from left to right except where parentheses
specify otherwise. A numeric literal appearing in an ormore or orless operator must be a

positive integer.

Whenever any error propagation into a component error model occurs, every Guard_Event
property associated with any of its out event ports is evaluated. If the associated expression eva-

luates to TRUE, the port event is raised. Either zero or one port event will be raised for each error
propagation, depending on the value of the Guard_Event property at the time the error is prop-

agated. For the purposes of error modeling and analysis, the latency between the error propagation
and the raising of any resulting events is zero. If more than one Guard_Event expression eva-

 SOFTWARE ENGINEERING INSTITUTE | 53

luates to TRUE when an error propagation occurs, there is no defined order in which the events
are considered to occur or be processed.

If the predefined standard out event data port Error (defined in Section 5.3 of the core AADL

standard4) for a thread has a connection declared with that port as its source and if the thread has
an associated error model, a Guard_Event error property association must be specified for the

predeclared error port.

If an event port is an ultimate source for an event connection and there is no Guard_Event

property associated with that event port, it should be assumed that an event could be raised for
that port in any state relevant to the modeling and analysis scenario.

7.3 MODE TRANSITION LOGIC

AADL mode transition declarations name one or more event ports whose events can trigger a
mode transition. By default, an event on any of the named ports can trigger the mode transition.
When modeling fault tolerance, it is desirable to model the specific conditions under which the
mode transition occurs, such as the use of a voting protocol.

7.3.1 Role of a Guard_Transition Property

The Guard_Transition property specifies the conditions under which a mode transition oc-

curs. This property can be used as an advanced decision-making mechanism that might model
voting protocols affecting the mode configuration of a component.

The Guard_Transition property supports

• Specification of conditions other than the default or condition on port events arriving at the
named event ports of a mode transition. We refer to this as Event-Based Mode Transition
Condition.

• Specification of conditions in terms of error propagations and error states in the error model
under which a mode transition is expected to occur. We refer to this as Error-Based Mode
Transition Condition.

We discuss each of these two scenarios in turn.

4 The SAE AADL standard is available from the SAE as document AS5506. It can be ordered using this Web ad-
dress: http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506.

http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506

54 | CMU/SEI-2007-TN-043

7.3.2 How to Specify Event-Based Mode Transition Conditions

Table 30 shows how a Guard_Transition property can be used as mode transition condition
on the port events named in a mode transition. The example declares a system computer having
two in event ports, Sensor1 and Sensor2. The system’s implementation declares modes,

System_OK and Sensors_Fail, and a mode transition that names both event ports Sensor1
and Sensor2. The Guard_Transition specifies that if the system is in mode System_OK,
it will move to mode Sensors_Fail if port events arrive through ports Sensor1 and
Sensor2. This overrides the default mode transition condition of Sensor1 or Sensor2.

Table 30: Event-Based Mode Transition Condition

system computer
features
Sensor1, Sensor2: in event port;
end computer;

system implementation computer.personal
modes
System_OK: initial mode;
Sensors_Fail: mode;
BecomeFailed: System_OK-[Sensor1, Sensor2] -> Sensors_Fail;
annex Error_Model {**
Guard_Transition =>
 (Sensor1 and Sensor2) applies to BecomeFailed;
**};
end computer.personal;

The error model annex subclause associated with the system implementation contains a
Guard_Transition property declaration for mode transition BecomeFailed. The
Guard_Transition properties specify that the mode transition occurs only when port events
arrive through ports Sensor1 and Sensor2.

Port events can have one of three sources.

1. generated using Guard_Event properties on the out event ports that are at the origin of
connections to ports Sensor1 and Sensor2

In this case, the port event represents a port event that reports an error model state of the ori-
ginator.

2. originated by an application thread that raises a port event through a Raise_Event system

call

In this case, the port event may represent application logic or an exceptional condition that
the thread wants to report.

3. originated by a processor to which an application thread is bound

In this case, the thread may have decided to pass this event on to the receiving component.

 SOFTWARE ENGINEERING INSTITUTE | 55

A separate Guard_Transition property must be defined for each mode transition. The mode
transition is identified by name5 in the applies to clause. The condition under which a port

event occurs is specified by a logic expression that can refer to

• outgoing subcomponent event ports

• incoming features of the component for which the Guard_Transition is declared

The optional outgoing propagations or error states, which are specified in square brackets after the
event port name, are not used when specifying mode transition conditions.

The logic expression can contain the following logic operators: not, and, or, ormore,
orless. The not operator has the highest precedence, followed by the and operator. The other

operators have equal precedence and are evaluated from left to right except where parentheses
specify otherwise. A numeric literal appearing in an ormore or orless operator must be a

positive integer.

Each time a port event occurs that might cause a mode transition, the logic expression of a
Guard_Transition property that names event ports is evaluated. If the expression evaluates

to TRUE, any mode transition labeled with that event port will occur.

7.3.3 How to Specify Error-Based Mode Transition Conditions

This section illustrates the use of Guard_Event for specifying error-based mode transition con-

ditions.

A Guard_Transition property may specify a condition in terms of error states and error

propagations under which a mode transition is to occur. This may result in the
Guard_Transition condition having the value TRUE, even if a port event named in the

mode transition has not been raised. This inconsistency is referred to in the Error Model Annex
standard as “false mode transition” [SAE-AS5506/1 2006, Annex E.3.4.3 (10)]. To avoid this
inconsistency, we recommend that the error state and propagation-based condition for a mode
transition be specified through a Guard_Event.

Table 31 shows how a Guard_Event property can be used to specify an error-based mode tran-
sition condition. The example declares a system computer having two in data ports, Sensor1

and Sensor2. The system’s implementation declares modes, System_OK and
Sensors_Fail, and a mode transition that names both event ports Sensor1 and Sensor2.
The Guard_Event specifies that if the system is in mode System_OK, it will move to mode
Sensors_Fail if FailedVisible is propagated through port Sensor1 and Sensor2
(i.e., both originating components are in the Failed error state and this can be observed by the

recipient).

5 Erratum to the AADL standard provides the ability to name mode transitions.

56 | CMU/SEI-2007-TN-043

Table 31: Error-Based Mode Transition Condition

system computer
features
Sensor1, Sensor2: in data port;
end computer;

system implementation computer.personal
modes
System_OK: initial mode;
Sensors_Fail: mode;
System_OK-[self.BeFailed] -> Sensors_Fail;
annex Error_Model {**
Guard_Event =>
 (Sensor1[FailedVisible] and Sensor2[FailedVisible])
 applies to self.BeFailed;
**};
end computer.personal;

7.4 MODE TRANSITIONS AND ERROR MODELS

AADL components of a system can be either active or inactive in a particular mode. For certain
analyses, it may be interesting to consider distinct behaviors in the presence of faults for inactive
and active components. To this end, the AADL Error Model Annex standard allows you to de-
clare (optionally) an initial inactive state, in addition to the initial state, in an error model type.
This initial inactive state is the initial state of the component if the component is inactive in the
initial mode of the system. If no initial inactive state is declared, the initial state is used even if the
component is initially inactive.

When the system configuration changes (i.e., when the component is activated or deactivated), the
error model characteristics can change. This mode change can be in the error model. An error
state transition labeled activate occurs when the component is activated at a mode transition
while an error state transition labeled deactivate occurs when the component is deactivated at

a mode transition. If a component is activated or deactivated at a mode transition but no transi-
tions from the current state are labeled respectively activate and deactivate, its state does

not change.

Table 32 shows an error model that declares an initial inactive state. It is an error-free state, just
like the initial (active) state. We make the assumption that an inactive component does not fail. A
component that is error-free when activated at a mode transition moves to an active error-free
state and may fail while the component is active. An active failed component may be repaired to
regain its active error-free state. If a failed component is deactivated, it moves directly to an inac-
tive error-free state.

 SOFTWARE ENGINEERING INSTITUTE | 57

Table 32: Activate and Deactivate State Transitions

error model Modal
features
ON_ErrorFree: initial error state;
OFF_ErrorFree: initial inactive error state;
Failed: error state;
Fail: error event {Occurrence => poisson lambda};
Repair: error event {Occurrence => poisson mu};
end Modal;

error model implementation Modal.example
transitions
ON_ErrorFree-[deactivate]->OFF_ErrorFree;
OFF_ErrorFree-[activate]->ON_ErrorFree;

ON_ErrorFree-[Fail]->Failed;
Failed-[out CorruptedData]->Failed;
Failed-[Repair]->ON_ErrorFree;
Failed-[deactivate]->OFF_ErrorFree;
end Modal.example;

7.5 AADL MODEL EXAMPLES FOR SYSTEMS WITH MODES

This section presents a series of example models for systems that have modes and failure behav-
iors. All of the models can be used to drive dependability analyses. They show how the fault-
related information is added to different AADL architecture models and how this fault logic can
be related to the fault management mechanisms used in the system architecture.

The examples represent dual redundant systems and self-managing systems. The redundant com-
ponents provide the same service. This service may be responding to server subprogram calls or
processing a data stream, event stream, or event data stream. Those systems may be complete sys-
tems or may be components of larger systems. Modes are used to model fault management
through reconfiguration at runtime. Error models are used to capture the fault behavior. Section
7.5.1 presents a dual-redundant system in a cold standby setup where the components are able to
detect faults themselves. Section 7.5.2 presents the same dual-redundant system in a hot standby
setup. Section 7.5.3 presents a system that observes its own faults and takes corrective actions
itself (i.e., a self-managing system). Section 7.5.4 presents a dual-redundant system with a moni-
toring component (e.g., a health monitor). Section 7.5.5 presents a dual-redundant system with
mutually informing components, and Section 7.5.6 presents a dual-redundant system with mutu-
ally observing components.

7.5.1 Cold Standby of Self-Observing Components

In this scenario, the component is assumed to be self-observing (i.e., able to report its own error
states as port events). The redundant instances of the component reside inside system components
whose mode determines which component instance and connection is active at a given time. In
case of the cold standby pattern, only one component is active in a given mode and only the con-
nections to and from the active component are active in the same mode. The cold standby pattern
is shown in Figure 13 for a component processing a data port stream. The active component and

58 | CMU/SEI-2007-TN-043

connections are shown in black, while the inactive component and connections are shown in gray.
CompP and CompB do not communicate one with the other. The large, round-cornered rectangle
on the left shows the Primary mode as active mode, in which component CompP is active. The
large, round-cornered rectangle on the right it shows the Backup mode with component CompB
active.

Figure 13: Cold Standby Pattern

Figure 14 shows the two modes (Primary and Backup) and an event port for each of the redundant
components through which the component reports that it is in a failed state. The mode transition
occurs when the active component reports a failure. In this model, it is assumed that the failure is
recoverable (i.e., the component can perform its service when reactivated through a mode transi-
tion).

Figure 14: Cold Standby of a Self-Observing Component

 SOFTWARE ENGINEERING INSTITUTE | 59

Table 33 shows a part of the AADL architecture model (textual AADL) and the associated error
model. A Guard_Event property is associated with the out event port involved in mode transi-

tions. We use the Modal.example error model in this example; it takes into account the fact

that components get deactivated and activated through mode transitions.

Table 33: Cold Standby of a Self-Observing Component

System computer
features
Input: in data port;
Output: out data port;
IFailed: out event port;
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => Modal.example;
 Guard_Event => self[Failed] applies to IFailed;
**};
end computer.personal;

system CSBy
features
Input: in data port;
Output: our data port;
end CSBy;

system implementation CSBy.generic
subcomponents
CompP: system computer.personal in modes Primary;
CompB: system computer.personal in modes Backup;
connections
data port Input -> CompP.Input in modes Primary;
data port CompP.Output -> Output in modes Primary;
data port Input -> CompB.Input in modes Backup;
data port CompB.Output -> Output in modes Backup;
modes
Primary: initial mode;
Backup: mode;
Primary -[CompP.IFailed]-> Backup;
Backup -[CompB.IFailed]->Primary;
end CSBy.generic;

7.5.2 Hot Standby of Self-Observing Components

In this scenario the component is assumed to be self–observing (i.e., able to report its own error
states as port events). The redundant instances of the component reside inside system components
whose mode determines which component instance and connection is active at a given time. In
case of the hot standby pattern, both components are active, but only one component’s output is
made available as output of the redundant system. The hot standby pattern is shown in Figure 15
for a component processing a data port stream. The active component and connections are shown
in black, while the inactive connections are shown in gray. CompP and CompB do not communi-
cate with each other. In the large, round-cornered rectangle on the left, the Primary mode is ac-

60 | CMU/SEI-2007-TN-043

tive, in which component CompP output is sent out through an active connection, while the con-
nection from CompB is inactive. In the large, round-cornered rectangle on the right, the Backup
mode is active with component CompB output made available through an active connection, while
the connection from CompP is inactive.

Figure 15: Hot Standby Pattern

Figure 16 shows the two modes (Primary and Backup) and two event ports for each of the redun-
dant components. The component reports that it is in an error-free or in a failed state through the
event ports. The mode transition occurs when one component reports a failure and the other com-
ponent reports that it is error free. In this model, it is assumed that the failure is recoverable (i.e.,
the component can perform its service when reactivated through a mode transition).

Figure 16: Hot Standby of a Self-Observing Component

 SOFTWARE ENGINEERING INSTITUTE | 61

Table 34 shows part of an AADL architecture model and associated error model. Guard_Event
properties are associated with the out event ports involved in mode transitions.
Guard_Transition properties define the mode transition condition with respect to the event

ports and the mode transition specification with respect to the error states.

Table 34: Hot Standby of a Self-Observing Component

System computer
features
Input: in data port;
Output: out data port;
IAmOk: out event port;
IFailed: out event port;
end computer;

system implementation computer.personal
annex Error_Model {**
 Model => dependent.general;
 Guard_Event => self [ErrorFree] applies to IAmOk;
 Guard_Event => self [Failed] applies to IFailed;
**};
end computer.personal;

system CSBy
features
Input: in data port;
Output: our data port;
end CSBy;

system implementation CSBy.generic
subcomponents
CompP: system computer.personal;
CompB: system computer.personal;
connections
data port Input -> CompP.Input;
data port CompP.Output -> Output;
data port Input -> CompB.Input;
data port CompB.Output -> Output in modes Backup;
modes
Primary: initial mode;
Backup: mode;
ToBackup: Primary -[CompP.IFailed, CompB.IAmOk]-> Backup;
ToPrimary: Backup -[CompP.IAmOk, CompB.IFailed]-> Primary;
annex Error_Model {**
-- mode transition conditions
 Guard_Transition => CompP.IFailed and CompB.IAmOk
 applies to ToBackup;
 Guard_Transition => CompP.IAmOk and CompB.IFailed
 applies to ToPrimary;
**};
end CSBy.generic;

62 | CMU/SEI-2007-TN-043

7.5.3 Self-Managing Components

In this scenario, the focus is on how a component is self managing (i.e., able to manage its own
mode transitions). In other words, the component has several operational modes and will operate
in different modes in error-free and error states. This structure differs from the previous two ex-
amples in which a system component was managing its subcomponents.

Guard_Event properties associated with outgoing event ports of the component are intended to

report an error state to other components. This design would require that users route the event
back to an incoming event port of the component to be named in a mode transition. Instead, we
will associate the Guard_Event with an event local to the component, which is expressed by
self.eventname.

We consider the following scenarios of a self-managing component.

• The component may be a thread (i.e., may cause failure if it is actively executing). The code
of the thread itself may raise the event by calling on Raise_Event, or the event may be raised
in one of the called subprograms. This scenario is illustrated on the left in Figure 17.

• The component may be a higher level system component (e.g., a process or system). In this
case, the event may be raised by a subcomponent or the component itself. Where it is raised
by the component, the event might be raised by the underlying runtime system or may repre-
sent an abstraction for a raised event in a partially specified system model, such as a model
of major subsystems or partitions. This scenario is illustrated on the right in Figure 17.

• The fault of an application component may be detected by the execution platform (i.e., a
processor, on behalf of the application component). This scenario is illustrated in the center
in Figure 17.

Figure 17 shows a self-managing thread and system that have two modes. The modes are used to
represent mode-specific property values, such as mode-specific execution time, and to allow for
specification of mode-specific configurations of subcomponents and connections. The mode tran-
sition observes events raised by

• thread and system

• called subprogram or a subcomponent

• processor on which the thread executes

The raising of the event by the component itself is represented by a call to the Raise_Event system
subprogram or by an event abstraction expressed by self.eventname. The figure also shows

the thread and system observing an event raised by the processor (e.g., an event that is caused by a
protected address space violation during the execution of the thread). Notice that the processor
may report a fault through the exception handling mechanism of the language runtime system of
the application. In that case, the application code of the thread may handle the exception and de-
cide to raise a port event, as shown on the left.

 SOFTWARE ENGINEERING INSTITUTE | 63

Figure 17: A Self-Managing Component

Table 35 shows a part of the AADL architecture model (textual AADL) and the associated error
model for the self-managing thread and system examples depicted in Figure 17. The mode transi-
tion observes the thread’s own raised events as well as events raised by the processor on which
the thread executes. The raising of the event by the thread itself is represented by a call to the
Raise_Event system subprogram. The mode transition refers to it by self.eventname. The

Guard_Event property specifies under what conditions this event is raised. Notice that it is not

required to explicitly specify the Raise_Event call unless its temporal order in the call sequence
matters.

The fault may be identified by the subprogram Fcn. In that case, the subprogram call would report
the event through an event port of the subprogram and the Guard_Event is part of the subpro-

gram declaration. Events raised by the processor to which the thread is bound are named by the
processor type. The system component follows the same pattern, but it does not include an ex-
plicit Raise_Event call.

64 | CMU/SEI-2007-TN-043

Table 35: Self-Managing Component

thread SelfObsT
features
Input: in data port;
Output: out data port;
end SelfObsT;

thread implementation SelfObsT.personal
calls
f: subprogram Fcn;
IFailed: subprogram Raise_Event;
connections
data port Input -> F.Input;
data port F.Output -> Output;
modes
Nominal: initial mode;
Recovery: mode;
Nominal-[F.Ifailed, self.IFailed, PPC.PAV]-> Recovery;
annex Error_Model {**
 Guard_Event => self[FailedVisible] applies to self.IFailed;
**};
end SelfObsT.personal;

system SelfObs
features
Input: in data port;
Output: out data port;
end SelfObs;

system implementation SelfObs.personal
subcomponents
subsys: system;
connections
data port Input -> subsys.Input;
data port subsys.Output -> Output;
modes
Nominal: initial mode;
Recovery: mode;
Nominal-[subsys.Ifailed, self.IFailed, PPC.PAV]-> Recovery;
annex Error_Model {**
 Guard_Event => self[FailedVisible] applies to self.IFailed;
**};
end SelfObs.personal;

7.5.4 A Monitoring Component

In this scenario, we introduce a monitoring component that monitors the output of the component
to determine whether the active component fails. The system modeled in Figure 18 consists of
two identical active subcomponents and one monitoring component that makes decisions about
the two subcomponents based on its observation of the output. Each of the active subcomponents
can be in sender or receiver mode. In the sender mode, the component provides output, while in
the receiver mode it is in hot standby (i.e., does processing but sends the output only to the moni-
tor).

 SOFTWARE ENGINEERING INSTITUTE | 65

The Monitor component observes the output of the components. If the output of the active com-
ponent is missing or bad, the monitor initiates a mode transition. If it detects the failure of both
components, it waits for one of them to become operational and configures it through mode tran-
sition to send its output to other components. The controller initiates mode transitions by means of
Guard_Event properties associated with its outgoing event ports.

Figure 18: Monitoring Component

It is not necessary to associate Guard_Transition properties with mode transitions, as each

mode transition names only one event port. Table 36 shows a part of the AADL architecture mod-
el (textual AADL) and the associated error model.

66 | CMU/SEI-2007-TN-043

Table 36: Monitoring Component

System computer
features
Output: out data port;
end computer;

system implementation computer.impl
annex Error_Model {**
 Model => independent.general;
**};
end computer.impl;

system Monitor
features
Output1: in data port;
Sender1: out event port;
Output2: in data port;
Sender2: out event port;
SenderNone: out event port;
end Monitor;

system implementation Monitor.generic
annex Error_Model {**
 Model => independent.general;
 Guard_Event => Output1[FailedVisible] and Output2[ErrorFree]
 applies to Sender2;
 Guard_Event => Output2[FailedVisible] and Output1[ErrorFree]
 applies to Sender1;
 Guard_Event => Output2[FailedVisible] and Output1[FailedVisible]
 applies to SenderNone;
**};
end Monitor.generic;

system MonSys
features
Output: out data port;
end MonSys;

system implementation MonSys.generic
subcomponents
Comp1: system computer.impl;
Comp2: system computer.impl;
Monitor: system Monitor.generic;
connections
data port Comp1.Output-> Output in modes Comp1Active;
data port Comp2.Output-> Output in modes Comp2Active;
data port Comp1.Output->Monitor.Output1;
data port Comp2.Output->Monitor.Output2;
Modes
NoneActive: initial mode;
Comp1active: Mode;
Comp2Active: Mode;
NoneActive –[Monitor.Sender1]-> Comp1Active;
NoneActive –[Monitor.Sender2]-> Comp2Active;
Comp2Active –[Monitor.Sender1]-> Comp1Active;
Comp1Active –[Monitor.Sender2]-> Comp2Active;
Comp2Active –[Monitor.SenderNone]-> NoneActive;
Comp1Active –[Monitor.SenderNone]-> NoneActive;
end MonSys.generic;

 SOFTWARE ENGINEERING INSTITUTE | 67

7.5.5 Mutually Informing Components

In this scenario, we have two components that inform each other about their state. Each compo-
nent decides whether it should be the active sender and determines whether it has encountered a
fault or is in a state to operate normally. A component goes into a reboot state to repair itself and
re-enter a normal operational state.

The system modeled in Figure 19 consists of two identical subcomponents. Each subcomponent
can be in one of these modes: sender, receiver, reboot to become sender, or reboot to become re-
ceiver. When a subcomponent is in the sender mode, it provides the service expected from the
system. If a failure occurs in a component, the component reports that fact to the other component
as an event IFailed and goes into reboot mode. The other component must switch to sender mode,
so that the expected service continues to be provided. Once the component has recovered, it tran-
sitions into receiver mode. If the second component fails as well, both components reboot.

When both components fail, the first one to complete its reboot goes into the sender mode. Simi-
larly, during startup both components start in reboot and the first one to complete its initialization
sequence (in this case assumed to be the same as used for reboot) will transition to the sender
mode, while the second component transitions to receiver mode. The figure shows event ports
named in mode transitions as dashed lines. It also shows locally raised events as dashed ovals.
Naming of locally raised events in a mode transition is shown as a label on the mode transition.

Figure 19: Mutually Informing Components

The logic behind the mode transitions is described in the error model subclause of the component.
Table 37 shows a part of an AADL architecture model and associated error model. Comp1 and
Comp2 have the same error model. Locally raised events are shown syntactically as
self.eventname. Each locally raised event is also connected to an outgoing event port in

order to report the event to the companion component.

The error model subclause contains two sets of declarations. The first is a set of Guard_Event

declarations to represent under what error model conditions a local event is raised. The second set
of Guard_Transition declarations that indicate under what port event conditions a mode

transition occurs.

68 | CMU/SEI-2007-TN-043

Table 37: Mutually Informing Components

system computer
features
IFailed: out event port;
IAmOk: out event port;
HeFailed: in event port;
HeIsOk: in event port;
Input: in event data port;
Output: out event data port;
end computer;

system implementation computer.impl
connections
event port self.IReboot -> IFailed;
event port self.IAmOk -> IAmOk;
modes
Sender: mode;
Receiver: mode;
Reboot: initial mode;
DoReboot1: Sender-[self.IReboot]->Reboot;
DoReboot2: Receiver-[self.IReboot]->Reboot;
BeSender1: Reboot-[self.IamOk,HeFailed]->Sender;
BeReceiver: Reboot-[self.IAmOk,HeFailed]->Receiver;
BeSender2: Receiver-[self.IAmOk,HeFailed]->Sender;
annex Error_Model {**
 Model => dependent.general;
 Guard_Event => self[ErrorFree]
 applies to self.IAmOk;
 Guard_Event => self[Failed]
 applies to self.IReboot;
 Guard_Transition => HeFailed and self.IAmOk
 applies to BeSender1;
 Guard_Transition => HeFailed and self.IAmOk
 applies to BeSender2;
 Guard_Transition => HeIsOk and self.IAmOk
 applies to BeReceiver;
 **};
end computer.impl;

system Informers
features
Input: in data port;
Output: out data port;
end Informers;

system implementation Informers.generic
subcomponents
Comp1: system computer.impl;
Comp2: system computer.impl;
connections
event data port Input -> Comp1.Input;
event data port Input -> Comp2.Input;
event data port Comp1.Output -> Output;
event data port Comp2.Output -> Output;
event port Comp1.IAmOk -> Comp2.HeIsOk;
event port Comp1.IFailed -> Comp2.HeFailed;
event port Comp2.IAmOk -> Comp1.HeIsOk;
event port Comp2.IFailed -> Comp1.HeFailed;
end Informers.generic;

 SOFTWARE ENGINEERING INSTITUTE | 69

7.5.6 Mutually Observing Components

In this scenario, we have two components that observe each other’s output to determine whether
the other component has failed. Based on this information and its own error state, each component
decides whether it should be the active sender of output. A component goes into a reboot state to
repair itself and be able to enter a normal operational state again. Different from the mutually in-
forming component scenario, a component in this scenario does not require the cooperation of the
other component to report its own error states. Instead lack of output and erroneous output allow
the observing component to determine that the other component misbehaves. The mutually ob-
serving model is shown in Figure 20.

Figure 20: Mutually Observing Components

The AADL text description of the mutually observing component patterns is shown in Table 38.
The model primarily differs in that the conditions for mode transitions are specified as guard
events on the error propagation from the other component based on the exchange of component
outputs.

70 | CMU/SEI-2007-TN-043

Table 38: Mutually Observing Components

system computer
features
Input: in event data port;
Output: out event data port;
HisOutput: in event data port;
end computer;

system implementation computer.impl
modes
Sender: mode;
Receiver: mode;
Reboot: initial mode;
DoReboot1: Sender-[self.IFailed]->Reboot;
DoReboot2: Receiver-[self.IFailed]->Reboot;
BeSender1: Reboot-[self.IAmSender]->Sender;
BeReceiver: Reboot-[self.IAmReceiver]->Receiver;
BeSender2: Receiver-[self.IAmSender]->Sender;
annex Error_Model {**
 Model => dependent.general;
 Guard_Event =>
 self[Failed] applies to self.IFailed;
 Guard_Event =>
 HisData[FailedVisible] and self[ErrorFree]
 applies to self.IAmSender;
 Guard_Event =>
 HisData[ErrorFree] and self[ErrorFree]
 applies to self.IAmReceiver;
 **};
end computer.impl;

system Observers
features
Input: in data port;
Output: out data port;
end Observers;

system implementation Observers.generic
subcomponents
Comp1: system computer.impl;
Comp2: system computer.impl;
connections
event data port Input -> Comp1.Input;
event data port Input -> Comp2.Input;
event data port Comp1.Output -> Output;
event data port Comp2.Output -> Output;
event data port Comp1.Output -> Comp2.HisOutput;
event data port Comp2.Output -> Comp1.HisOutput;
end Observers.generic;

 SOFTWARE ENGINEERING INSTITUTE | 71

Observations

• The examples described in Sections 7.5.1 through 7.5.6 illustrate techniques for representing
management of faults by reconfiguration of the system mode transition. This reconfiguration
may be achieved by making the component itself modal or by the enclosing the component
that is taking responsibility for reconfiguring its subcomponents and connections between
them.

• Four of the examples (see Sections 7.5.1, 7.5.27.5.5, 7.5.3, and 7.5.5) illustrate the use of
components that are able to discover their own faults. In contrast, the monitoring component
and the mutually observing component examples (see sections 7.5.4 and 7.5.6) illustrate that
component failure may be observed externally by monitoring the component’s output. Bad
output, no output, and untimely output are examples of observations that allow a monitoring
component to draw the conclusion that a component has failed.

• All dual-redundant system examples use the same approach to fault tolerance, namely dual
redundancy. Each of them, however, makes different assumptions, uses different tactics,
and has different impact on the reliability of the system as a whole. For example, cold
standby (see Section 7.5.1) assumes that the component does not maintain state. Hot standby
(see Section 7.5.2) allows both components to maintain state independently. A monitoring
component (see Section 7.5.4) observes output simultaneously with the output being made
available to other components, resulting in occasional bad data to be passed on.

• In the mutually informing components example (see Section 7.5.5), the component detects
its own faults and reports them immediately (Failed state); in the mutually observing

components example (see Section 7.5.6), the component observes the fault of the other com-
ponent. For mutually observing components, this observation may be delayed relative to the
occurrence of the fault and is captured by the FailedVisible error propagation.

• Systems can be modeled at different levels of detail. The monitoring system and the mutu-
ally observing component examples (see Sections 7.5.4 and 7.5.6) explicitly model the oc-
currence of double faults and fault recovery.

• Error models provide a specification of faults and fault occurrence rates. They also provide
specifications of desired fault management strategies—expressed in mode transition and
event guards.

72 | CMU/SEI-2007-TN-043

8 Modeling Maintenance and Repair

Maintenance dependencies need to be described when repair facilities are shared between compo-
nents or when the maintenance or repair activity of some components has to be carried out ac-
cording to a given order or a specified strategy (i.e., software can be restarted only if the hardware
is available).

Components that are not dependent at the architectural level may become dependent due to the
maintenance strategy. Thus, the AADL architecture model might need to be adjusted to support
the description of dependencies related to the maintenance strategy. Because AADL error models
interact only by propagations through architectural features (i.e., connections or bindings), the
maintenance dependency between components’ AADL error models must also be supported by
the AADL architecture model. Consequently, besides the system architecture components, we
might need to add an AADL architecture model component to describe the maintenance strategy.

Figure 21 in the area marked a: shows an example of AADL dependability model. In this archi-

tecture, Component 3 and Component 4 do not interact at the AADL architecture level, as there is
no architecture-based dependency between them. However, if we assume that they share one re-
pairman, the maintenance strategy has to be accounted for in the AADL error model of the sys-
tem. Thus, it is necessary to represent the repairman at the AADL architecture model level, as
shown in Figure 21 in the area marked b: in order to model explicitly the maintenance depend-

ency between Component 3 and Component 4.

a:

b:

Figure 21: Maintenance Dependency

For the simplest repair strategy, the error model associated to the repairman should declare two
error states—one representing a free repairman and the other representing a busy repairman. The
transitions from one state to the other have to be triggered by propagations coming from the de-
pendent components. If the repairman is busy and a component needs it, the component keeps
sending the request until the repairman becomes free again. When the repairman is able to start
repairing a component, the component sends a notification to that component. This error model is
described in Table 39.

 SOFTWARE ENGINEERING INSTITUTE | 73

Table 39: Error Model for Shared Repairman

error model SharedRep
features
Free: initial error state;
Busy: error state;
RepairMe, Repaired: in error propagation;
StartRepair: out error propagation;
 {Occurrence => fixed 1};
end SharedRep;

error model implementation SharedRep.basic
transitions
Free-[in RepairMe]->Busy;
Busy-[out StartRepair]->Busy;
Busy-[in Repaired]->Free;
end SharedRep.basic;

74 | CMU/SEI-2007-TN-043

9 Analysis Report Information

AADL architecture models can be enriched with dependability-related information (through error
annex library and subclause declarations) and subjected to several dependability analyses. You
need a mechanism to specify the error states and error propagations that are of particular interest
for an analysis. The AADL Error Model Annex standard specifies a Report property that has to
be associated to such states and out or in out propagations. The use of this property needs to

be specified in the context of a specific analysis. For example, for dependability evaluation pur-
poses, the Report property could be associated to up states. Table 40 shows how the Report

property might be used.

Table 40: Report Property

system implementation mySystem.generic
annex Error_Model {**
 Model => dependent.general;
 Report => ErrorFree;
**};
end mySystem.generic;

 SOFTWARE ENGINEERING INSTITUTE | 75

10 Summary

The Society of Automotive Engineers AADL standard was designed to model embedded systems
architectures. AADL architecture models can be annotated with information to support a wide
range of architectural analyses. The AADL Error Model Annex standard defines a standardized
language extension to the AADL to represent information for dependability analysis. Using the
annex, you can define reusable error models that consist of

• a set of error states

• error state transitions

• error events and error propagations that trigger error state transitions

Error models are associated with components and connections and can have component- or con-
nection-specific properties. These properties specify the rate of occurrence of error events and the
probability of error propagation.

This report has shown how error models can be used to model various fault tolerance strategies
through error propagation filtering and masking. It has discussed the interaction between the logi-
cal system states represented by the error model and the operational system modes of the running
system. It also has illustrated how maintenance and repair activities can be represented in error
models.

This report is the first in a series by the Carnegie Mellon® Software Engineering Institute to pro-
vide guidance in architecture modeling and analysis with AADL. Other reports will discuss addi-
tional dependability-related topics—such as fault tree analysis, reliability analysis, and redun-
dancy and health-monitoring patterns to describe fault management support in the operational
system—as well resource management, security analysis, data integrity, and safety-criticality.

® Carnegie Mellon is registered n the U.S. Patent and Trademark Office by Carnegie Mellon University.

76 | CMU/SEI-2007-TN-043

References

[Arlat 1998]
Arlat, J.; Blanquart, J.P.; Costes, A.; Crouzet, Y.; Deswarte, Y.; Fabre, J.-C.; Guillermain, H.;
Kaâniche, M.; Kanoun, K.; Mazet, C.; Powell, D.; Rabéjac, C.; & Thévenod, P. Dependability
Handbook. Edited by J.-C Laprie. LAAS-CNRS Report 98-346, 1998.

[Binns 2004]
Binns, P. & Vestal, S. “Hierarchical Composition and Abstraction in Architecture Models.”
Workshop on Architectural Design Languages at the 18th IFIP World Computer Congress. Tou-
louse, France, August 27, 2004. http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-
27-1100-VESTAL/BinnsVestalADLWorkshop.ppt

[Feiler 2004]
Feiler, P. H.; Gluch, D. P.; Hudak, J.; & Lewis, B. A. “Pattern-Based Analysis of an Embedded
Real-time System Architecture.” Workshop on Architectural Design Languages at the 18th IFIP
World Computer Congress. Toulouse, France, August 27, 2004.
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-
LEWIS/AADLpatternstoulouse.pdf

[Feiler 2006]
Feiler, P. H.; Gluch, D. P.; & Hudak, J. J. The Architecture Analysis & Design Language (AADL):
An Introduction. (CMU/SEI-2006-TN-011). Pittsburgh, PA: Software Engineering Institute Car-
negie Mellon University, 2006.
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html

[SAE-ARP4761 1996]
Society of Automotive Engineers. SAE Standards: ARP4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and Equipment. December
1996. http://www.sae.org/technical/standards/ARP4761

[SAE-AS5506 2004]
Society of Automotive Engineers. SAE Standards: AS5506, Architecture Analysis & Design Lan-
guage (AADL), November 2004.
http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506

[SAE-AS5506/1 2006]
Society of Automotive Engineers. SAE Standards: AS5506/1, Architecture Analysis & Design
Language (AADL) Annex Volume 1, June 2006. http://www.sae.org/technical/standards/AS5506/1

http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-VESTAL/BinnsVestalADLWorkshop.ppt
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-VESTAL/BinnsVestalADLWorkshop.ppt
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-LEWIS/AADLpatternstoulouse.pdf
http://www.laas.fr/FERIA/SVF/WADL04/slides/CONCORDE2-27-1100-LEWIS/AADLpatternstoulouse.pdf
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html
http://www.sae.org/technical/standards/ARP4761
http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PROD_CD=AS5506
http://www.sae.org/technical/standards/AS5506/1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re-
garding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquar-
ters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office
of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2007

3. REPORT TYPE AND DATES
COVERED

Final
4. TITLE AND SUBTITLE

Dependability Modeling with AADL

5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Peter Feiler and Ana Rugina
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2007-TN-043

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The Society for Automotive Engineers (SAE) recently published an Error Model Annex document (SAE AS-5506/1) to complement the

SAE Architecture Analysis & Design Language (AADL) standard document (SAE AS5506) with capabilities for dependability modeling.

The purpose of this report is to (a) explain the capabilities of the Error Model Annex and (b) provide guidance on the use of the AADL

and the error model in modeling dependability aspects of embedded system architectures. The focus of the guidance is the creation of

error model libraries and the instantiation of these error models on AADL architecture models. In that context, the report discusses

modeling of error propagation, error filtering and masking, the interactions between error models and systems with operational modes,

and modeling of repair activities.
14. SUBJECT TERMS

Error model, AADL, architecture analysis and design language, dependability analysis, model-

based engineering

15. NUMBER OF PAGES

86

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Dependability Modeling with the Architecture Analysis & Design Language(AADL)
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Dependability Modeling with the Error Model Annex
	3 The AADL Architecture Model
	4 Reusable Error Models
	5 System Architectures and Error Models
	6 System Instance Error Models
	7 Operational Modes and Error States
	8 Modeling Maintenance and Repair
	9 Analysis Report Information
	10 Summary
	References

